已知圓O:x2+y2=2,直線(xiàn)l:y=kx-2。
(1)若直線(xiàn)l與圓O相切,求k的值;
(2)若直線(xiàn)l與圓O交于不同的兩點(diǎn)A,B,當(dāng)∠AOB為銳角時(shí),求k的取值范圍;
(3)若,P是直線(xiàn)l上的動(dòng)點(diǎn),過(guò)P作圓O的兩條切線(xiàn)PC,PD,切點(diǎn)為C,D,探究:直線(xiàn)CD是否過(guò)定點(diǎn)。
解:(1)由圓心O到直線(xiàn)l的距離
可得k=±1。
(2)設(shè)A,B的坐標(biāo)分別為(x1,y1),(x2,y2),
將直線(xiàn)l:y=kx-2代入x2+y2=2,
整理,得(1+k2)·x2-4kx+2=0,
所以
Δ=(-4k)2-8(1+k2)>0,即k2>1
當(dāng)∠AOB為銳角時(shí),


可得k2<3,
又因?yàn)閗2>1,
故k的取值范圍為。
(3)設(shè)切點(diǎn)C,D的坐標(biāo)分別為(x1,y1),(x2,y2),
動(dòng)點(diǎn)P的坐標(biāo)為(x0,y0),則過(guò)切點(diǎn)C的切線(xiàn)方程為:x·x1+y·y1=2,
所以x0·x1+y0·y1=2
同理,過(guò)切點(diǎn)D的切線(xiàn)方程為:x0·x2+y0·y2=2,
所以過(guò)C,D的直線(xiàn)方程為:x0·x+y0·y=2
,將其代入上式并化簡(jiǎn)整理,
,而x0∈R,
且-2y-2=0,可得,y=-1,
即直線(xiàn)CD過(guò)定點(diǎn)。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知圓O:x2+y2=2交x軸于A,B兩點(diǎn),曲線(xiàn)C是以AB為長(zhǎng)軸,離心率為
2
2
的橢圓,其左焦點(diǎn)為F.若P是圓O上一點(diǎn),連接PF,過(guò)原點(diǎn)O作直線(xiàn)PF的垂線(xiàn)交橢圓C的左準(zhǔn)線(xiàn)于點(diǎn)Q.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)P的坐標(biāo)為(1,1),求證:直線(xiàn)PQ與圓O相切;
(3)試探究:當(dāng)點(diǎn)P在圓O上運(yùn)動(dòng)時(shí)(不與A、B重合),直線(xiàn)PQ與圓O是否保持相切的位置關(guān)系?若是,請(qǐng)證明;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知圓o:x2+y2=b2與橢圓
x2
a2
+
y2
b2
=1(a>b>0)
有一個(gè)公共點(diǎn)A(0,1),F(xiàn)為橢圓的左焦點(diǎn),直線(xiàn)AF被圓所截得的弦長(zhǎng)為1.
(1)求橢圓方程.
(2)圓o與x軸的兩個(gè)交點(diǎn)為C、D,B( x0,y0)是橢圓上異于點(diǎn)A的一個(gè)動(dòng)點(diǎn),在線(xiàn)段CD上是否存在點(diǎn)T(t,0),使|BT|=|AT|,若存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓O:x2+y2=9,定點(diǎn) A(6,0),直線(xiàn)l:3x-4y-25=0
(1)若P為圓O上動(dòng)點(diǎn),求線(xiàn)段PA的中點(diǎn)M的軌跡方程
(2)設(shè)E、F分別是圓O和直線(xiàn)l上任意一點(diǎn),求線(xiàn)段EF的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•廣州一模)已知圓O:x2+y2=r2,點(diǎn)P(a,b)(ab≠0)是圓O內(nèi)一點(diǎn),過(guò)點(diǎn)P的圓O的最短弦所在的直線(xiàn)為l1,直線(xiàn)l2的方程為ax+by+r2=0,那么(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓O:x2+y2=1,點(diǎn)P在直線(xiàn)x=
3
上,O為坐標(biāo)原點(diǎn),若圓O上存在點(diǎn)Q,使∠OPQ=30°,則點(diǎn)P的縱坐標(biāo)y0的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案