解不等式|x+1|>|x-3|.

思路解析:不等號左右兩邊平方后去掉絕對值符號,化簡后解一元一次不等式即可.

解:∵|x+1|、|x-3|均非負(fù),∴兩邊平方,得(x+1)2>(x-3)2.

x2+2x+1>x2-6x+9,即8x>8,得x>1.∴原不等式的解集為{x|x>1}.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于任意的實(shí)數(shù)a,不等式|a+1|+|a-1|≥M恒成立,記實(shí)數(shù)M的最大值是m.
(1)求m的值;
(2)解不等式|x-1|+|2x-3|≤m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于 x的不等式|2x-m|≤1的整數(shù)解有且僅有2.
(1)求整數(shù)m的值.
(2)解不等式|x-1|+|x-3|≥m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

15、解不等式|x-1|+|x+2|≤5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

畫出不等式|x|+|y|≤1的圖形,并指出其解的范圍.利用不等式的圖形解不等式
①|(zhì)|x+1|-|x-1||<1;      
②|x|+2|y|≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

本題有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.
(Ⅰ)選修4-2:矩陣與變換,
已知矩陣A=
01
a0
,矩陣B=
02
b0
,直線l1
:x-y+4=0經(jīng)矩陣A所對應(yīng)的變換得直線l2,直線l2又經(jīng)矩陣B所對應(yīng)的變換得到直線l3:x+y+4=0,求直線l2的方程.
(Ⅱ)選修4-4:坐標(biāo)系與參數(shù)方程,
求直線
x=-2+2t
y=-2t
被曲線
x=1+4cosθ
y=-1+4sinθ
截得的弦長.
(Ⅲ)選修4-5:不等式選講,解不等式|x+1|+|2x-4|>6.

查看答案和解析>>

同步練習(xí)冊答案