設(shè)橢圓E: (a,b>0)過M(2,) ,N(,1)兩點,O為坐標(biāo)原點,

(1)求橢圓E的方程;

(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且?若存在,寫出該圓的方程,若不存在說明理由。

【解析】本試題主要是考查了橢圓方程的求解,待定系數(shù)法求解,并且考查了圓與橢圓的位置關(guān)系的研究,利用恒有交點,聯(lián)立方程組和韋達(dá)定理一起表示向量OA,OB,并證明垂直。

 

【答案】

解:(1)因為橢圓E: (a,b>0)過M(2,) ,N(,1)兩點,

所以解得所以橢圓E的方程為

(2)假設(shè)存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且,設(shè)該圓的切線方程為解方程組,即,  

則△=,即

,要使,需使,即,所以,所以,所以,所以,即,因為直線為圓心在原點的圓的一條切線,所以圓的半徑為,,,所求的圓為,此時圓的切線都滿足,而當(dāng)切線的斜率不存在時切線為與橢圓的兩個交點為滿足,綜上, 存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓E: (a,b>0)過M(2,) ,N(,1)兩點,O為坐標(biāo)原點,

(I)求橢圓E的方程;

(II)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且?若存在,寫出該圓的方程,并求|AB |的取值范圍,若不存在說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009山東卷理) (本小題滿分14分)

設(shè)橢圓E: a,b>0)過M(2,) ,N (,1)兩點,O為坐標(biāo)原點,

(I)求橢圓E的方程;

(II)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且?若存在,寫出該圓的方程,并求|AB |的取值范圍,若不存在說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆河南省高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)

設(shè)橢圓E: (a,b>0)過M(2,) ,N(,1)兩點,O為坐標(biāo)原點.

(Ⅰ)求橢圓E的方程;

(Ⅱ)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交A,B且

?若存在,寫出該圓的方程,若不存在說明理由。

 

七彩教育網(wǎng)(www.7caiedu.cn)

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆河北省高三下學(xué)期理科數(shù)學(xué)試卷 題型:解答題

設(shè)橢圓E: (a,b>0)過M(2,) ,N(,1)兩點,O為坐標(biāo)原點,

(I)求橢圓E的方程;

(II)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且?若存在,寫出該圓的方程,并求|AB|的取值范圍,若不存在說明理由

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆江西省、樟樹中學(xué)、高安中學(xué)、高二上學(xué)期期末文科數(shù)學(xué) 題型:解答題

設(shè)橢圓E: (a,b>0)過M(2,) ,N(,1)兩點,O為坐標(biāo)原點,(I)求橢圓E的方程;

(II)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且?若存在,寫出該圓的方程,并求|AB |的取值范圍,若不存在說明理由。

 

查看答案和解析>>

同步練習(xí)冊答案