設(shè)數(shù)列的前項(xiàng)和為,若對于任意的正整數(shù)都有,
(1)設(shè),求證:數(shù)列是等比數(shù)列,并求出的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和。
(1)證數(shù)列是等比數(shù)列,需利用定義證明,數(shù)列通項(xiàng)公式
(2)

試題分析:(1)對于任意的正整數(shù)都成立,
兩式相減,得
, 即
,即對一切正整數(shù)都成立.
∴數(shù)列是等比數(shù)列.
由已知得   即
∴首項(xiàng),公比,.
.
(2)





點(diǎn)評:第一問由求通項(xiàng)主要用到的關(guān)系式,而后構(gòu)造與數(shù)列有關(guān)的關(guān)系式判定是常數(shù);第二問中數(shù)列通項(xiàng)公式是一次式與指數(shù)式乘積形式的,采用錯位相減法求和,這種方法是數(shù)列求和題目中?嫉姆椒
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知數(shù)列是等差數(shù)列,若,則數(shù)列的公差等于
A.1B.3C.5 D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在等差數(shù)列中每一項(xiàng)均不為0,若,則( )
A.2011B.2012C.2013D.2014

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列的前項(xiàng)和是二項(xiàng)式展開式中含奇次冪的系數(shù)和.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知{}是等差數(shù)列,其前項(xiàng)和為,{}是等比數(shù)列,且=,.
(1)求數(shù)列{}與{}的通項(xiàng)公式;
(2)記,求滿足不等式的最小正整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)數(shù)列,且數(shù)列是等差數(shù)列,是等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的前項(xiàng)和為,求的表達(dá)式;
(3)數(shù)列滿足,求數(shù)列的最大項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在數(shù)列中,,,則的值是                    (    )
A.B.C.D. 19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

)已知數(shù)列是等差數(shù)列,其前n項(xiàng)和為,
(I)求數(shù)列的通項(xiàng)公式;
(II)設(shè)p、q是正整數(shù),且p≠q. 證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

為等差數(shù)列,是其前n項(xiàng)的和,且,則=( )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案