【題目】下列命題正確的選項為(

①平面外一條直線與平面內的一條直線平行,則該直線與此平面平行;

②一個平面內的一條直線與另一個平面平行,則這兩個平面平行;

③一條直線與一個平面內的兩條直線垂直,則該直線與此平面垂直;

④一個平面過另一個平面的垂線,則這兩個平面垂直.

A.①②B.②③C.①④D.③④

【答案】C

【解析】

根據(jù)線面平行、面面平行、線面垂直和面面垂直的判定定理依次判斷各個選項即可得到結果.

對于①,根據(jù)直線與平面平行的判定定理可知①正確;

對于②,兩個平面平行,則需一個平面內的兩條相交直線平行于另一個平面,②錯誤;

對于③,若一條直線與平面內的兩條平行直線垂直,則直線與平面未必垂直,③錯誤;

對于④,根據(jù)平面與平面垂直的判定定理可知④正確.

故選:.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為一個56元集合.求最小的正整數(shù),使得對集合的任意15個子集,只要它們中間任何七個的并的元素個數(shù)均不少于,則這15個子集中一定存在三個集合,使得它們的交集非空.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某群體的人均通勤時間,是指單日內該群體中成員從居住地到工作地的平均用時.某地上班族中的成員僅以自駕或公交方式通勤.分析顯示:當的成員自駕時,自駕群體的人均通勤時間為(單位:分鐘),而公交群體的人均通勤時間不受影響,恒為分鐘,試根據(jù)上述分析結果回答下列問題:

1)當取何值時,公交群體的人均通勤時間等于自駕群體的人均通勤時間?

2)已知上班族的人均通勤時間計算公式為,討論單調性,并說明其實際意義.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】 表示正整數(shù) 在十進制下的各位數(shù)碼之和.定義,證明:對任意的 ,存在無窮多個,,使得 .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合是滿足下列性質的函數(shù)的全體:在定義域內存在實數(shù),使得.

1)判斷函數(shù)為常數(shù))是否屬于集合;

2)若屬于集合,求實數(shù)的取值范圍;

3)若,求證:對任意實數(shù),都有屬于集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設整數(shù),對置于個點及點處的卡片作如下操作:操作:若某個點處的卡片數(shù)不少于3,則可從中取出三張,在三點、處各放一張操作:若點處的卡片數(shù)不少于,則可從中取出張,在個點處各放一張。證明:只要放置于這個點處的卡片總數(shù)不少于,則總能通過若干次操作,使得每個點處的卡片數(shù)均不少于。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

1)討論函數(shù)的單調性;

2)如果對所有的≥1,都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}滿足an+1+(-1)n an =2n-1,則{an}的前64項和為(

A. 4290 B. 4160 C. 2145 D. 2080

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】男生4人和女生3人排成一排拍照留念.

1)有多少種不同的排法(結果用數(shù)值表示)?

2)要求兩端都不排女生,有多少種不同的排法(結果用數(shù)值表示)?

3)求甲乙兩人相鄰的概率.(結果用最簡分數(shù)表示)

查看答案和解析>>

同步練習冊答案