【題目】設為實數(shù),函數(shù).
(1)若,求的取值范圍;
(2)討論的單調(diào)性;
(3)當時,討論在區(qū)間內(nèi)的零點個數(shù).
【答案】(1) .
(2) 在上單調(diào)遞增,在上單調(diào)遞減.
(3) 當時,有一個零點;當時,有兩個零點.
【解析】
試題分析:(1)先由可得,再對的取值范圍進行討論可得的解,進而可得的取值范圍;(2)先寫函數(shù)的解析式,再對的取值范圍進行討論確定函數(shù)的單調(diào)性;(3)先由(2)得函數(shù)的最小值,再對的取值范圍進行討論確定在區(qū)間內(nèi)的零點個數(shù).
試題解析:(1),因為,所以,
當時,,顯然成立;當,則有,所以.所以.
綜上所述,的取值范圍是.
(2)
對于,其對稱軸為,開口向上,
所以在上單調(diào)遞增;
對于,其對稱軸為,開口向上,
所以在上單調(diào)遞減.
綜上所述,在上單調(diào)遞增,在上單調(diào)遞減.
(3)由(2)得在上單調(diào)遞增,在上單調(diào)遞減,所以.
(i)當時,,
令,即().
因為在上單調(diào)遞減,所以
而在上單調(diào)遞增,,所以與在無交點.
當時,,即,所以,所以,因為,所以,即當時,有一個零點.
(ii)當時,,
當時,,,而在上單調(diào)遞增,
當時,.下面比較與的大小
因為
所以
結(jié)合圖象不難得當時,與有兩個交點.
綜上所述,當時,有一個零點;當時,有兩個零點.
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)f(x)的最小值為1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間[2a,a+1]上不單調(diào),求實數(shù)a的取值范圍;
(3)在區(qū)間[-1,1]上,y=f(x)的圖象恒在y=2x+2m+1的圖象上方,試確定實數(shù)m的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在每年的3月份,濮陽市政府都會發(fā)動市民參與到植樹綠化活動中去林業(yè)管理部門為了保證樹苗的質(zhì)量都會在植樹前對樹苗進行檢測,現(xiàn)從甲、乙兩種樹苗中各抽測了株樹苗,量出它們的高度如下(單位:厘米),
甲:37,21,31,20,29,19,32,23,25,33;
乙:10,30,47,27,46,14,26,10,44,46.
(1)畫出兩組數(shù)據(jù)的莖葉圖并根據(jù)莖葉圖對甲、乙兩種樹苗的高度作比較,寫出兩個統(tǒng)計結(jié)論;
(2)設抽測的株甲種樹苗高度平均值為,將這株樹苗的高度依次輸人,按程序框(如圖)進行運算,問輸出的大小為多少?并說明的統(tǒng)計學意義,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,隨機抽取了個試銷售數(shù)據(jù),得到第個銷售單價(單位:元)與銷售(單位:件)的數(shù)據(jù)資料,算得
(1)求回歸直線方程;
(2)預計在今后的銷售中,銷量與單價仍然服從(1)中的關系,且該產(chǎn)品的成本是元/件,為使工廠獲得最大利潤,該產(chǎn)品的單價應定為多少元?(利潤-銷售收入-成本)
附:回歸直線方程中,,其中是樣本平均值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線()與軸交于點,動圓與直線相切,并且與圓相外切,
(1)求動圓的圓心的軌跡的方程;
(2)若過原點且傾斜角為的直線與曲線交于兩點,問是否存在以為直徑的圓經(jīng)過點?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設,滿足約束條件.
(1)畫出不等式表示的平面區(qū)域,并求該平面區(qū)域的面積;
(2)若目標函數(shù)的最大值為4,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如果一個幾何體的主視圖與左視圖是全等的長方形,邊長分別是,如圖所示,俯視圖是一個邊長為的正方形.
(1)求該幾何體的表面積;
(2)求該幾何體的外接球的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知過拋物線的焦點,斜率為的直線交拋物線于兩點,且.
(1)求該拋物線的方程;
(2)已知拋物線上一點,過點作拋物線的兩條弦和,且,判斷直線是否過定點?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高二年級進行了百科知識大賽,為了了解高二年級900名同學的比賽情況,現(xiàn)在甲、乙兩個班級各隨機抽取了10名同學的成績,比賽成績滿分為100分,80分以上可獲得二等獎,90分以上可以獲得一等獎,已知抽取的兩個班學生的成績(單位:分)數(shù)據(jù)的莖葉圖如圖1所示:
(1)比較兩組數(shù)據(jù)的分散程度(只需要給出結(jié)論),并求出甲組數(shù)據(jù)的頻率分布直方圖如圖2中所示的值;
(2)現(xiàn)從兩組數(shù)據(jù)中獲獎的學生里分別隨機抽取一人接受采訪,求被抽中的甲班學生成績高于乙班學生成績的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com