已知數(shù)列滿足

(1) 求證:數(shù)列的奇數(shù)項,偶數(shù)項均構成等差數(shù)列;

(2) 求的通項公式;

(3) 設,求數(shù)列的前項和.

 

【答案】

(1)見解析(2)  (3)

【解析】本試題主要是考查了遞推關系式的運用求解數(shù)列的通項公式,以及數(shù)列的和的綜合運用。

(1)由

,可知所以數(shù)列的奇數(shù)項,偶數(shù)項均構成等差數(shù)列,且公差都為4

(2)由

(3),利用錯位相減法可求得。

解:(I)由-----①

----------② ---------(2分)

② 減 ① 得

所以數(shù)列的奇數(shù)項,偶數(shù)項均構成等差數(shù)列,且公差都為4. --------(4分)

(II)由

-------------(6分)

由于,所以----(8分)

(III),利用錯位相減法可求得------------(13分)(注:中間步驟3分,結果2分)

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2013-2014學年黑龍江省高三上學期期中考試理科數(shù)學試卷(解析版) 題型:解答題

已知數(shù)列滿足

(1)求證:數(shù)列的奇數(shù)項,偶數(shù)項均構成等差數(shù)列;

(2)求的通項公式;

(3)設,求數(shù)列的前項和.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆安徽無為開城中學高二下學期期末考試理科數(shù)學試卷(解析版) 題型:解答題

已知數(shù)列滿足=-1,,數(shù)列滿足

(1)求證:數(shù)列為等比數(shù)列,并求數(shù)列的通項公式.

(2)求證:當時,

(3)設數(shù)列的前項和為,求證:當時,.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江蘇省南京市、鹽城市高三第一次模擬考試數(shù)學(解析版) 題型:解答題

(本小題滿分16分) [已知數(shù)列滿足

,.

(1)求數(shù)列的通項公式;

(2)若對每一個正整數(shù),若將按從小到大的順序排列后,此三項均能構成等

差數(shù)列, 且公差為.①求的值及對應的數(shù)列

②記為數(shù)列的前項和,問是否存在,使得對任意正整數(shù)恒成立?若存

在,求出的最大值;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年江蘇省高三下學期期末考試數(shù)學試卷 題型:解答題

(本小題滿分16分)

已知數(shù)列滿足,(1)若,求

(2)是否存在,使當時,恒為常數(shù)。若存在求,否則說明理由;

(3)若,求的前項的和(用表示)

 

查看答案和解析>>

同步練習冊答案