對于線性回歸方程,下列說法中不正確的是(    )

A.直線必經(jīng)過點                  B.增加一個單位時,平均增加個單位

C.樣本數(shù)據(jù)中時,可能有      D.樣本數(shù)據(jù)中時,一定有

 

【答案】

D

【解析】線性回歸方程根據(jù)樣本數(shù)據(jù)得到的一個近似曲線,但它得到的值也是一個近似值.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某種產(chǎn)品的年銷售量y和該年廣告費用支出x有關,現(xiàn)收集了5組觀測數(shù)據(jù)列于下表:
x/萬元 2 4 5 6 8 參考數(shù)據(jù):
5
i=1
x
2
i
=145
,
5
i=1
y
2
i
=13500
,
5
i=1
xiyi=1380
y/萬件 30 40 60 50 70
現(xiàn)確定以廣告費用支出x為解釋變量,銷售量y為預報變量對這兩個變量進行統(tǒng)計分析.
參考公式:
?
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
,
?
a
=
.
y
-
?
b
.
x
,R2=1-
n
i=1
(yi-
?
y
i
)
2
n
i=1
(yi-
.
y
)
2
.
x
=
1
n
n
i=1
xi
.
y
=
1
n
n
i=1
yi

(Ⅰ)作y和x的散點圖,根據(jù)該圖猜想它們之間是什么相關關系.
(Ⅱ)如果是線性相關關系,請用給出的最小二乘法公式求回歸直線方程;否則說明它們之間更趨近于什么非線性相關關系.
(Ⅲ)假如2011年廣告費用支出為10萬元,請根據(jù)你得到的模型,預報該年的銷售量y,并用R2的值說明解釋變量對于預報變量變化的貢獻率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:044

下表數(shù)據(jù)是熱水溫度x(單位:℃)對黃硐延長性y()效應的試驗結果,y是以延長度計算的,且對于給定的xy為正態(tài)變量,其方差與x無關.

畫出散點圖,并求yx的線性回歸方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:044

想象一下一個人從出生到死亡,在每個生日都測量身高,并作出這些數(shù)據(jù)散點圖,這些點將不會落在一條直線上.但在一段時間內的增長數(shù)據(jù)有時可以用線性回歸來分析.下表是一位母親給兒子作的成長記錄:

年齡/周歲

3

4

5

6

身高/cm

90.8

97.6

104.2

110.9

年齡/周歲

7

8

9

10

身高/cm

115.6

122.0

128.5

134.2

年齡/周歲

11

12

13

14

身高/cm

140.8

147.6

154.2

160.9

年齡/周歲

15

16

   

身高/cm

167.6

173.0

   

(1)作出這些數(shù)據(jù)的散點圖.

(2)求出這些數(shù)據(jù)的回歸方程.

(3)對于這個例子,你如何解釋斜率的含義?

(4)用下一年的身高減去當年的身高,計算每年身高的增長數(shù),并計算從3到16歲身高的平均增長數(shù).

(5)解釋一下斜率與每年平均增長的身高之間的聯(lián)系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

假設一個人從出生到死亡,在每個生日都測量身高,并作出這些數(shù)據(jù)散點圖,則這些點將不會落在一條直線上,但在一段時間內的增長數(shù)據(jù)有時可以用線性回歸來分析.下表是一位母親給兒子作的成長記錄:

年齡/周歲

3

4

5

6

7

8

9

身高/cm

90.8

97.6

104.2

110.9

115.6

122.0

128.5

年齡/周歲

10

11

12

13

14

15

16

身高/cm

134.2

140.8

147.6

154.2

160.9

167.6

173.0

(1)作出這些數(shù)據(jù)的散點圖;

(2)求出這些數(shù)據(jù)的回歸方程;

(3)對于這個例子,你如何解釋回歸系數(shù)的含義?

(4)用下一年的身高減去當年的身高,計算他每年身高的增長數(shù),并計算他從3~16歲身高的年均增長數(shù).

(5)解釋一下回歸系數(shù)與每年平均增長的身高之間的聯(lián)系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

想象一下一個人從出生到死亡,在每個生日都測量身高,并作出這些數(shù)據(jù)散點圖.這些點將不會落在一條直線上,但在一段時間內的增長數(shù)據(jù)有時可以用線性回歸來分析.下表是一位母親給兒子作的成長記錄.

年齡/周歲

3

4

5

6

7

8

9

10

11

12

13

14

15

16

身高/cm

90.8

97.6

104.2

110.9

115.6

122.0

128.5

134.2

140.8

147.6

154.2

160.9

167.6

173.0

(1)作出這些數(shù)據(jù)的散點圖.

(2)求出這些數(shù)據(jù)的回歸方程.

(3)對于這個例子,你如何解釋回歸系數(shù)的含義?

(4)用下一年的身高減去當年的身高,計算他每年身高的增長數(shù),并計算他從3—16歲身高的年均增長數(shù).

(5)解釋一下回歸系數(shù)與每年平均增長的身高之間的聯(lián)系.

查看答案和解析>>

同步練習冊答案