(12分)如圖,四邊形ABCD為矩形,BC⊥平面ABE,FCE上的點,
BF⊥平面ACE.
(1)求證:AEBE;
(2)設點M為線段AB的中點,點N為線段CE的中點.
求證:MN∥平面DAE
同解析
證明:(1)∵,∴,
,,∴,…………………………(3分)
,∴,又,
.…………………………(6分)
(2)取的中點,連接,
∵點為線段的中點.
,且, ……………………(8分)
又四邊形是矩形,點為線段的中點,∴,且,
,且,故四邊形是平行四邊形,
…………(10分)    
平面,平面,∴∥平面. …………………(12分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分10分)如圖,四棱錐的底面ABCD是正方形,底面ABCD,E,F(xiàn)分別是AC,PB的中點.
(I)證明:平面PCD;
(Ⅱ) 若求EF與平面PAC所成角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
在如圖所示的空間幾何體中,平面平面ABC,AB=BC=CA=DA=DC=BE=2,BE和平面ABC所成的角為60°,且點E在平面ABC上的射影落在的平分線上。
(1)求證:DE//平面ABC;
(2)求二面角E—BC—A的余弦;
(3)求多面體ABCDE的體積。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知E,F(xiàn)分別是正方體ABCD-A1B1C1D1的棱BC和CD的中點,求:
(1)A1D與EF所成角的大;
(2)A1F與平面B1EB所成角;
(3)二面角C-D1B1-B的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)
在立體圖形P-ABCD中,底面ABCD是一個直角梯形,∠BAD=90°,AD∥BC,
AB=BC=a,AD=PA=2a,E是邊的中點,且PA⊥底面ABCD。
(1)求證:BE⊥PD
(2)求證:
(3)求異面直線AE與CD所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)
如圖,在三棱柱中,已知,側面
(1)求直線C1B與底面ABC所成角的正弦值;
(2)在棱(不包含端點上確定一點的位置,使得(要求說明理由).
(3)在(2)的條件下,若,求二面角的大小.
      

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

 (本題滿分12分) 如圖,正方形所在平面與平面四邊形所在平面互相垂直,△是等腰直角三角形
(1)求證:;
(2)設線段的中點為,在直線 上是否存在一點,使得?若存在,請指出點的位置,并證明你的結論;若不存在,請說明理由;
(3)求二面角正切值的大小。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
右圖是一個直三棱柱(以A1B1C1為底面)被一平面所截得到
的幾何體,截面為ABC.已知A1B1B1C1=l,∠AlBlC1=90°,
AAl=4,BBl=2,CCl=3.
(1)設點OAB的中點,證明:OC∥平面A1B1C1
(2)求二面角BACA1的大;
(3)求此幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是兩條不同的直線,是兩個不重合的平面,則下列命題中正確的是  
A.若B.若
C.若D.若

查看答案和解析>>

同步練習冊答案