設(shè)變量
x
y
滿足約束條件
0≤x≤
2
y≤2
x-
2
y≤0
,則z=
2
x+y的最大值為
 
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式對(duì)應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識(shí),通過(guò)平移即可求z的最大值.
解答: 解:作出不等式對(duì)應(yīng)的平面區(qū)域(陰影部分),
由z=
2
x+y,得y=-
2
x+z
,
平移直線y=-
2
x+z
,由圖象可知當(dāng)直線y=-
2
x+z
經(jīng)過(guò)點(diǎn)A(
2
,2
)時(shí),直線y=-
2
x+z
的截距最大,此時(shí)z最大.
此時(shí)z的最大值為z=
2
×
2
+2=2+2=4,
故答案為:4.
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知公差大于零的等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a3•a4=117,a2+a5=22,求Sn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若等比數(shù)列{an}的前n項(xiàng)和為Sn=3n-1,則其公比q為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<π)的圖象如圖所示,則該函數(shù)的解析式為y=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

三個(gè)正數(shù)a,b,c滿足a≤b+c≤2a,b≤a+c≤2b,則
b
a
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)正實(shí)數(shù)a,b滿足a+b=2,則
1
a
+
a
8b
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題“p:?x∈(1,
5
2
),使不等式tx2+2x-3>0有解為真命題,則實(shí)數(shù)t的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正數(shù)x,y滿足x+2y=2,則
x+8y
xy
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)AB是橢圓的長(zhǎng)軸,點(diǎn)C在橢圓上,且∠CBA=
π
4
.若AB=4,BC=
2
,則橢圓的焦距為( 。
A、
3
3
B、
2
6
3
C、
4
6
3
D、
2
3
3

查看答案和解析>>

同步練習(xí)冊(cè)答案