如圖,PD垂直正方形ABCD所在平面,AB=2,E是PB的中點(diǎn),cos<數(shù)學(xué)公式,數(shù)學(xué)公式>=數(shù)學(xué)公式
(1)建立適當(dāng)?shù)目臻g坐標(biāo)系,寫出點(diǎn)E的坐標(biāo);
(2)在平面PAD內(nèi)求一點(diǎn)F,使EF⊥平面PCB.

解:(1)以DA、DC、DP所在直線分別為x軸、y軸、z軸建立空間坐標(biāo)系,則A(2,0,0),B(2,2,0),C(0,2,0).
設(shè)P(0,0,2m),則E(1,1,m).
=(-1,1,m),=(0,0,2m),
∴cos<,>==,解得m=1.
∴點(diǎn)E坐標(biāo)是(1,1,1).
(2)∵F∈平面PAD,∴可設(shè)F(x,0,z)?=(x-1,-1,z-1).
∵EF⊥平面PCB,∴?(x-1,-1,z-1)•(2,0,0)=0?x=1.
,∴(x-1,-1,z-1)•(0,2,-2)=0?z=0.
∴點(diǎn)F的坐標(biāo)是(1,0,0),即點(diǎn)F是AD的中點(diǎn).
分析:(1)以DA、DC、DP所在直線分別為x軸、y軸、z軸建立空間坐標(biāo)系,求出的坐標(biāo),代入兩個(gè)向量的夾角公式,解方程求得點(diǎn)E坐標(biāo).
(2)由F∈平面PAD,可設(shè)F(x,0,z),則=0,且=0,解方程組求得F的坐標(biāo).
點(diǎn)評(píng):本題考查兩個(gè)向量的夾角公式,向量和平面垂直的性質(zhì),體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,PD垂直正方形ABCD所在平面,AB=2,E是PB的中點(diǎn),cos<
DP
AE
>=
3
3

(1)建立適當(dāng)?shù)目臻g坐標(biāo)系,寫出點(diǎn)E的坐標(biāo);
(2)在平面PAD內(nèi)求一點(diǎn)F,使EF⊥平面PCB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,PD垂直正方形ABCD所在的平面,AB=PD=2,動(dòng)點(diǎn)E在線段PB上,則二面角E-AC-B的取值范圍是( 。
A、[0,π-arctan
2
]
B、[0,arctan
2
]
C、[0,
π
2
]
D、[arctan
2
,
π
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年濰坊市三模)(12分)如圖,PD垂直正方形ABCD所在平面,AB=2,EPB的中點(diǎn),,

 

  (1)建立適當(dāng)?shù)目臻g坐標(biāo)系,寫出點(diǎn)E的坐標(biāo);

 。2)在平面PAD內(nèi)求一點(diǎn)F,使EF⊥平面PCB

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年新教材高考數(shù)學(xué)模擬題詳解精編試卷(3)(解析版) 題型:解答題

如圖,PD垂直正方形ABCD所在平面,AB=2,E是PB的中點(diǎn),cos<>=
(1)建立適當(dāng)?shù)目臻g坐標(biāo)系,寫出點(diǎn)E的坐標(biāo);
(2)在平面PAD內(nèi)求一點(diǎn)F,使EF⊥平面PCB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高考數(shù)學(xué)必做100題(選修1-2)(解析版) 題型:解答題

如圖,PD垂直正方形ABCD所在平面,AB=2,E是PB的中點(diǎn),cos<>=
(1)建立適當(dāng)?shù)目臻g坐標(biāo)系,寫出點(diǎn)E的坐標(biāo);
(2)在平面PAD內(nèi)求一點(diǎn)F,使EF⊥平面PCB.

查看答案和解析>>

同步練習(xí)冊(cè)答案