【題目】設(shè)函數(shù),已知曲線在點(diǎn)處的切線與直線垂直.
(1)求的值;
(2)若函數(shù),且在區(qū)間上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.
【答案】(1)(2)
【解析】試題分析: (1)由導(dǎo)數(shù)幾何意義得切線斜率等于切點(diǎn)處導(dǎo)數(shù)值,列式,解方程組可得的值;(2)先化簡(jiǎn),由題意得導(dǎo)數(shù)在不變號(hào),由于單調(diào)性不確定,需分類討論,而兩種情形都需利用變量分離法,將不等式恒成立問題轉(zhuǎn)化為對(duì)應(yīng)函數(shù)最值問題,結(jié)合導(dǎo)數(shù)研究新函數(shù)變化趨勢(shì),確定函數(shù)最值取法,進(jìn)而確定實(shí)數(shù)的取值范圍.
試題解析:解:(1)曲線在點(diǎn)處的切線斜率為2,所以,
又,即,所以.
(2)由(1)知,,
所以,
若在上為單調(diào)遞減函數(shù),則在上恒成立,
即,所以,
令,則,
由,得,,得,
故函數(shù)在上是減函數(shù),在上是增函數(shù),
則,無最大值,在上不恒成立,
故在不可能是單調(diào)減函數(shù),
若在上為單調(diào)遞增函數(shù),則在上恒成立,
即,所以,由前面推理知,的最小值為1,
∴,故的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=loga(x+3)-1(a>0,a≠1)的圖象恒過定點(diǎn)A.
(1) 求點(diǎn)A的坐標(biāo);
(2) 若點(diǎn)A在直線mx+ny+1=0上,其中m,n都是正數(shù),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列滿足,為的前項(xiàng)和.證明:對(duì)任意,
(1)當(dāng)時(shí),;
(2)當(dāng)時(shí),;
(3)當(dāng)時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為,離心率為.設(shè)過點(diǎn)的直線與橢圓相交于不同兩點(diǎn), 周長(zhǎng)為.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點(diǎn),證明:當(dāng)直線變化時(shí),總有TA與的斜率之和為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求過點(diǎn)且與曲線相切的直線方程;
(Ⅱ)設(shè),其中為非零實(shí)數(shù),若有兩個(gè)極值點(diǎn),且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=+x在x=1處的切線方程為2x﹣y+b=0.
(Ⅰ)求實(shí)數(shù)a,b的值;
(Ⅱ)若函數(shù)g(x)=f(x)+x2﹣kx,且g(x)是其定義域上的增函數(shù),求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知p:x∈A={x|x2﹣2x﹣3≤0,x∈R},q:x∈B={x|x2﹣2mx+m2﹣9≤0,x∈R,m∈R}.
(1)若A∩B=[1,3],求實(shí)數(shù)m的值;
(2)若p是q的充分條件,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,過點(diǎn)的直線交拋物線于兩點(diǎn),坐標(biāo)原點(diǎn)為,且12.
(Ⅰ)求拋物線的方程;
(Ⅱ)當(dāng)以為直徑的圓的面積為時(shí),求的面積的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法:
①將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,均值與方差都不變;
②設(shè)有一個(gè)回歸方程,變量x增加一個(gè)單位時(shí),y平均增加3個(gè)單位;
③線性回歸方程必經(jīng)過點(diǎn);
④在吸煙與患肺病這兩個(gè)分類變量的計(jì)算中,從獨(dú)立性檢驗(yàn)知,有99%的把握認(rèn)為吸煙與患肺病有關(guān)系時(shí),我們說現(xiàn)有100人吸煙,那么其中有99人患肺。渲绣e(cuò)誤的個(gè)數(shù)是( )
A. 0
B. 1
C. 2
D. 3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com