【題目】已知下列三個(gè)命題:
①若一個(gè)球的半徑縮小到原來的 ,則其體積縮小到原來的 ;
②若兩組數(shù)據(jù)的平均數(shù)相等,則它們的標(biāo)準(zhǔn)差也相等;
③直線x+y+1=0與圓 相切.
其中真命題的序號是( )
A.①②③
B.①②
C.①③
D.②③
【答案】C
【解析】解:①由球的體積公式V= 可知,若一個(gè)球的半徑縮小到原來的 ,則其體積縮小到原來的 ;故①正確;
②若兩組數(shù)據(jù)的平均數(shù)相等,則它們的標(biāo)準(zhǔn)差不一定相等,如2,2,2和1,2,3;這兩組數(shù)據(jù)的平均數(shù)相等,它們的標(biāo)準(zhǔn)差不相等,故②錯(cuò);
③圓 的圓心到直線x+y+1=0的距離d= =半徑r,故直線x+y+1=0與圓 相切,③正確.
故選C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解命題的真假判斷與應(yīng)用的相關(guān)知識,掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=1+(1+a)x﹣x2﹣x3 , 其中a>0.
(1)討論f(x)在其定義域上的單調(diào)性;
(2)當(dāng)x∈[0,1]時(shí),求f(x)取得最大值和最小值時(shí)的x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了增強(qiáng)消防安全意識,某中學(xué)做了一次消防知識講座,從男生中隨機(jī)抽取了50人,從女生中隨機(jī)抽取了70人參加消防知識測試,統(tǒng)計(jì)數(shù)據(jù)得到如下的列聯(lián)表:
優(yōu)秀 | 非優(yōu)秀 | 總計(jì) | |
男生 | 15 | 35 | 50 |
女生 | 30 | 40 | 70 |
總計(jì) | 45 | 75 | 120 |
(1)試判斷能否有90%的把握認(rèn)為消防知識的測試成績優(yōu)秀與否與性別有關(guān);
(2)為了宣傳消防安全知識,從該校測試成績獲得優(yōu)秀的同學(xué)中采用分層抽樣的方法,隨機(jī)選出6名組成宣傳小組.現(xiàn)從這6人中隨機(jī)抽取2名到校外宣傳,求到校外宣傳的同學(xué)中至少有1名是男生的概率。
附:
P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)口袋中有個(gè)白球和個(gè)紅球(,且),每次從袋中摸出兩個(gè)球(每次摸球后把這兩個(gè)球放回袋中),若摸出的兩個(gè)球顏色相同為中獎(jiǎng),否則為不中獎(jiǎng).
(1)試用含的代數(shù)式表示一次摸球中獎(jiǎng)的概率;
(2)若,求三次摸球恰有一次中獎(jiǎng)的概率;
(3)記三次摸球恰有一次中獎(jiǎng)的概率為,當(dāng)為何值時(shí),取最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖四邊形ABCD為菱形,G為AC與BD交點(diǎn),,
(I)證明:平面平面;
(II)若, 三棱錐的體積為,求該三棱錐的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線 ﹣ =1(a>0,b>0)的兩條漸近線與拋物線y2=2px(p>0)的準(zhǔn)線分別交于O、A、B三點(diǎn),O為坐標(biāo)原點(diǎn).若雙曲線的離心率為2,△AOB的面積為 ,則p=( )
A.1
B.
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從1,3,5,7,9這五個(gè)數(shù)中,每次取出兩個(gè)不同的數(shù)分別記為a,b,共可得到lga﹣lgb的不同值的個(gè)數(shù)是( )
A.9
B.10
C.18
D.20
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)F在軸正半軸上,過點(diǎn)F的直線交拋物線于A,B兩點(diǎn),線段AB的長是8,AB的中點(diǎn)到軸的距離是.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)在拋物線上是否存在不與原點(diǎn)重合的點(diǎn)P,使得過點(diǎn)P的直線交拋物線于另一點(diǎn)Q,滿足,且直線PQ與拋物線在點(diǎn)P處的切線垂直?并請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com