已知-1,成等差數(shù)列,-1,成等比數(shù)列,則(    )
A.B.C.D.
C
本題主要考查等差數(shù)列、等比數(shù)列的通項(xiàng)公式及其性質(zhì)。因?yàn)?1,成等差數(shù)列,所以;又-1,成等比數(shù)列,所以,(2不合題意,舍去),故,選C。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分14分) 設(shè)等差數(shù)列{an}的首項(xiàng)a1a,前n項(xiàng)和為Sn
(Ⅰ) 若S1,S2S4成等比數(shù)列,求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ) 證明:n∈N*, Sn,Sn1,Sn2不構(gòu)成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列中,是數(shù)列的前項(xiàng)和,對(duì)任意,有
(Ⅰ)求常數(shù)的值;
(Ⅱ)求數(shù)列的通項(xiàng)公式;
(Ⅲ)設(shè)數(shù)列的通項(xiàng)公式是,前項(xiàng)和為,求證:對(duì)于任意的正整數(shù),總有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),數(shù)列滿足,且
(1)試探究數(shù)列是否是等比數(shù)列?
(2)試證明;
(3)設(shè),試探究數(shù)列是否存在最大項(xiàng)和最小項(xiàng)?若存在求出
最大項(xiàng)和最小項(xiàng),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)數(shù)列{}是等差數(shù)列,且,是數(shù)列{}的前n項(xiàng)和,則( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在等差數(shù)列{an}中,設(shè)公差為d,若前n項(xiàng)和為Sn=-n2,則通項(xiàng)和公差分別為(  )
A.an=2n-1,d=-2B.an=-2n+1,d=-2
C.an=2n-1,d=2D.an=-2n+1,d=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列的前n項(xiàng)和為Sn,且
(1)求數(shù)列的通項(xiàng);
(2)設(shè),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

知等差數(shù)列的首項(xiàng),公差,且第二項(xiàng)、第四項(xiàng)、第十四項(xiàng)分別是等比數(shù)列的第二項(xiàng)、第三項(xiàng)、第四項(xiàng)
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列滿足,求數(shù)列的前項(xiàng)和的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知等差數(shù)列中,若則有,則在等比數(shù)列中,若會(huì)有類(lèi)似的結(jié)論: ______

查看答案和解析>>

同步練習(xí)冊(cè)答案