【題目】函數(shù)的定義域為,若對于任意的,,當(dāng)時,都有,則稱函數(shù)上為非減函數(shù).設(shè)函數(shù)上為非減函數(shù),且滿足以下三個條件:①;②;③,則等于( ).

A. B. C. D.

【答案】B

【解析】

由賦值法得到f()=,f()=,再根據(jù)題中的表達(dá)式遞推得到f()=,f()=得到f()=,再由題中所給的非減函數(shù)得到可得 f()≤f()≤f(,進而得到結(jié)果.

x=1,由條件求得f(1)=1,f()=f(1)=,再由 f()+f()=1,由此求得f()=.

∵②,令x=1,可得 f()=f(1)=

再由可得f()+f()=1,故有f()=

對于,令x=1可得 f()=f(1)=;

由此可得 f()=f()=、f()=f()=、f()=f()=、f()= f()=

x=,由f()=,可得 f()=,f()=,f()=,f()=

再由可得 f()≤f()≤f(),即 ≤f()≤,故 f()=.

故答案為:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代秦九韶算法可計算多項式anxn+an1xn1+…+a1x+a0的值,它所反映的程序框圖如圖所示,當(dāng)x=1時,當(dāng)多項式為x4+4x3+6x2+4x+1的值為(

A.5
B.16
C.15
D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)判斷并證明函數(shù)的奇偶性;

(2)判斷當(dāng)時函數(shù)的單調(diào)性,并用定義證明;

(3)若定義域為,解不等式.

【答案】(1)奇函數(shù)(2)增函數(shù)(3)

【解析】試題分析:1)判斷與證明函數(shù)的奇偶性,首先要確定函數(shù)的定義域是否關(guān)于原點對稱,再判斷f(-x)f(x)的關(guān)系,如果對定義域上的任意x,都滿足f(-x)=f(x)就是偶函數(shù),如果f(-x)=-f(x)就是奇函數(shù),否則是非奇非偶函數(shù)。2)利函數(shù)單調(diào)性定義證明單調(diào)性,按假設(shè),作差,化簡,判斷,下結(jié)論五個步驟。(3)由(1)(2)奇函數(shù)在(-1,1)為單調(diào)函數(shù),

原不等式變形為f(2x-1)<-f(x),f(2x-1)<f(-x),再由函數(shù)的單調(diào)性及定義(-1,1)求解得x范圍。

試題解析:1)函數(shù)為奇函數(shù).證明如下:

定義域為

為奇函數(shù)

2)函數(shù)在(-1,1)為單調(diào)函數(shù).證明如下:

任取,則

在(-1,1)上為增函數(shù)

3由(1)、(2)可得

解得:

所以,原不等式的解集為

點睛

(1)奇偶性:判斷與證明函數(shù)的奇偶性,首先要確定函數(shù)的定義域是否關(guān)于原點對稱,再判斷f(-x)f(x)的關(guān)系,如果對定義域上的任意x,都滿足f(-x)=f(x)就是偶函數(shù),如果f(-x)=-f(x)就是奇函數(shù),否則是非奇非偶函數(shù)。

(2)單調(diào)性:利函數(shù)單調(diào)性定義證明單調(diào)性,按假設(shè),作差,化簡,定號,下結(jié)論五個步驟。

型】解答
結(jié)束】
22

【題目】已知函數(shù).

(1)若的定義域和值域均是,求實數(shù)的值;

(2)若在區(qū)間上是減函數(shù),且對任意的,都有,求實數(shù)的取值范圍;

(3)若,且對任意的,都存在,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的左、右焦點分別是,且點上,拋物線與橢圓交于四點

(I)求的方程;

(Ⅱ)試探究坐標(biāo)平面上是否存在定點,滿足?(若存在,求出的坐標(biāo);若不存在,需說明理由.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,,,,且,,,上一點,.

(1)求證:平面;

(2)求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知P是橢圓上的一點,F1,F2是橢圓的兩個焦點。

1當(dāng)∠F1PF2=60°時,求△F1PF2的面積;

2當(dāng)∠F1PF2為鈍角時,求點P橫坐標(biāo)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列關(guān)系式中正確的是( 。

A. sin11°cos10°sin168° B. sin168°sin11°cos10°

C. sin11°sin168°cos10° D. sin168°cos10°sin11°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,正方形所在的平面與正三角形ABC所在的平面互相垂直, ,且, 的中點.

(1)求證: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的標(biāo)準(zhǔn)方程是,

(1)求它的焦點坐標(biāo)和準(zhǔn)線方程.

(2)直線L過已知拋物線的焦點且傾斜角為,并與拋物線相交于A、B兩點,求弦AB的長度.

查看答案和解析>>

同步練習(xí)冊答案