【題目】隨著生活節(jié)奏的加快以及停車(chē)日益困難,網(wǎng)約車(chē)越來(lái)越受到大眾的歡迎.某網(wǎng)約車(chē)公司為了了解客戶對(duì)公司的滿意度,通過(guò)網(wǎng)絡(luò)問(wèn)卷的方式,隨機(jī)調(diào)查了2000個(gè)客戶,并通過(guò)隨機(jī)抽樣得到100個(gè)樣本數(shù)據(jù),統(tǒng)計(jì)后,得到如下頻率分布表:
分組 | |||||||
頻數(shù) | 6 | 12 | 19 | 25 | 20 | 13 | 5 |
(1)根據(jù)頻率分布表,可以認(rèn)為滿意度,其中
近似看作是這100個(gè)樣本數(shù)據(jù)的平均值,利用正態(tài)分布,求
;
(2)該公司為參加網(wǎng)絡(luò)問(wèn)卷調(diào)查的客戶提供了抽獎(jiǎng)活動(dòng),活動(dòng)規(guī)則:①若滿意度不低于,可抽獎(jiǎng)2次;若滿意度低于
,可抽獎(jiǎng)1次;②每次抽獎(jiǎng)可獲得的優(yōu)惠券金額為10元或20元,相應(yīng)的概率均為
.求參與網(wǎng)絡(luò)問(wèn)卷調(diào)查的客戶人均可獲得優(yōu)惠券金額(單位:元).
(附:參考數(shù)據(jù)與公式:若,則
,
,
.)
【答案】(1)(2)
元
【解析】
(1)由題意得,則利用
=
+
代入計(jì)算即可得解;
(2)由題意的可能取值為10,20,30,40,分別求出
、
、
、
后列出分布列,即可求得期望,即可得解.
(1)依題意得滿意度的平均值為
,
所以,
因?yàn)?/span>,所以
,
所以=
=+
=+
=+
=
.
(2)依題意得,設(shè)參與網(wǎng)絡(luò)問(wèn)卷調(diào)查的客戶可獲得優(yōu)惠券金額為,
則的可能取值為10,20,30,40,
因?yàn)?/span>,
,
所以,
,
,
,
所以的分布列為
所以的數(shù)學(xué)期望為
.
所以參與網(wǎng)絡(luò)問(wèn)卷調(diào)查的客戶人均可獲得優(yōu)惠券金額元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù),當(dāng)
時(shí),有
恒成立,則實(shí)數(shù)m的取值范圍是 ( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】唐代詩(shī)人李頎的詩(shī)《古從軍行》開(kāi)頭兩句說(shuō):“白日登山望烽火,黃昏飲馬傍交河.”詩(shī)中隱含著一個(gè)有趣的數(shù)學(xué)問(wèn)題——“將軍飲馬”,即將軍在觀望烽火之后從山腳下某處出發(fā),先到河邊飲馬再回到軍營(yíng),怎樣走才能使總路程最短?在如圖所示的直角坐標(biāo)系xOy中,設(shè)軍營(yíng)所在平面區(qū)域?yàn)?/span>{(x,y)|x2+y2≤},河岸線所在直線方程為x+2y-4=0.假定將軍從點(diǎn)P(
,
)處出發(fā),只要到達(dá)軍營(yíng)所在區(qū)域即回到軍營(yíng),當(dāng)將軍選擇最短路程時(shí),飲馬點(diǎn)A的縱坐標(biāo)為______.最短總路程為______
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定圓,動(dòng)圓
過(guò)點(diǎn)
且與圓
相切,記動(dòng)圓圓心
的軌跡為
.
(1)求軌跡的方程
(2)若軌跡上存在兩個(gè)不同點(diǎn)
,
關(guān)于直線
對(duì)稱,求
面積的最大值(
為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)
在點(diǎn)
處的切線方程;
(2)討論的單調(diào)性;
(3)若函數(shù)在
上無(wú)零點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱臺(tái)中,底面是正方形,且
,點(diǎn)
,
分別為棱
,
的中點(diǎn),二面角
的平面角大小為
.
(1)證明:;
(2)求直線與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】新冠肺炎疫情期間,為了減少外出聚集,“線上買(mǎi)菜”受追捧.某電商平臺(tái)在地區(qū)隨機(jī)抽取了
位居民進(jìn)行調(diào)研,獲得了他們每個(gè)人近七天“線上買(mǎi)菜”消費(fèi)總金額(單位:元),整理得到如圖所示頻率分布直方圖.
(1)求的值;
(2)從“線上買(mǎi)菜”消費(fèi)總金額不低于元的被調(diào)研居民中,隨機(jī)抽取
位給予獎(jiǎng)品,求這
位“線上買(mǎi)菜”消費(fèi)總金額均低于
元的概率;
(3)若地區(qū)有
萬(wàn)居民,該平臺(tái)為了促進(jìn)消費(fèi),擬對(duì)消費(fèi)總金額不到平均水平一半的居民投放每人
元的電子補(bǔ)貼.假設(shè)每組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替,試根據(jù)上述頻率分布直方圖,估計(jì)該平臺(tái)在
地區(qū)擬投放的電子補(bǔ)貼總金額.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】博覽會(huì)安排了分別標(biāo)有序號(hào)為“1號(hào)”“2號(hào)”“3號(hào)”的三輛車(chē),等可能隨機(jī)順序前往酒店接嘉賓.某嘉賓突發(fā)奇想,設(shè)計(jì)兩種乘車(chē)方案.方案一:不乘坐第一輛車(chē),若第二輛車(chē)的車(chē)序號(hào)大于第一輛車(chē)的車(chē)序號(hào),就乘坐此車(chē),否則乘坐第三輛車(chē);方案二:直接乘坐第一輛車(chē).記方案一與方案二坐到“3號(hào)”車(chē)的概率分別為P1,P2,則( )
A. P1P2= B. P1=P2=
C. P1+P2=
D. P1<P2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,并在兩坐標(biāo)系中取相同的長(zhǎng)度單位.已知圓
的方程為
,直線
的參數(shù)方程為
(
為參數(shù),
為直線
的傾斜角).
(1)寫(xiě)出圓的極坐標(biāo)方程和直線
的普通方程;
(2)若為圓
上任意一點(diǎn),求點(diǎn)
到直線
的距離的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com