【題目】學生會為了調(diào)查學生對2018年俄羅斯世界杯的關(guān)注是否與性別有關(guān),抽樣調(diào)查100人,得到如下數(shù)據(jù):
不關(guān)注 | 關(guān)注 | 總計 | |
男生 | 30 | 15 | 45 |
女生 | 45 | 10 | 55 |
總計 | 75 | 25 | 100 |
根據(jù)表中數(shù)據(jù),通過計算統(tǒng)計量K2= ,并參考一下臨界數(shù)據(jù):
P(K2>k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |
若由此認為“學生對2018年俄羅斯年世界杯的關(guān)注與性別有關(guān)”,則此結(jié)論出錯的概率不超過( )
A.0.10
B.0.05
C.0.025
D.0.01
科目:高中數(shù)學 來源: 題型:
【題目】中國古代算書《孫子算經(jīng)》中有一著名的問題“物不知數(shù)”如圖1,原題為:今有物,不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二,問物幾何?后來,南宋數(shù)學家秦九韶在其著作《數(shù)學九章》中對此類問題的解法做了系統(tǒng)的論述,并稱之為“大衍求一術(shù)”,如圖2程序框圖的算法思路源于“大衍求一術(shù)”執(zhí)行該程序框圖,若輸入的a,b分別為20,17,則輸出的c=( )
A.1
B.6
C.7
D.11
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: (a>b>0)左、右焦點分別為F1 , F2 , A(2,0)是橢圓的右頂點,過F2且垂直于x軸的直線交橢圓于P,Q兩點,且|PQ|=3;
(1)求橢圓的方程;
(2)若直線l與橢圓交于兩點M,N(M,N不同于點A),若 =0, = ;
①求證:直線l過定點;并求出定點坐標;
②求直線AT的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 且滿足a1=1,nSn+1﹣(n+1)Sn= ,n∈N*
(1)求a2的值;
(2)求數(shù)列{an}的通項公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)數(shù)列滿足且
(1)求證:數(shù)列為等比數(shù)列,并求數(shù)列的通項.
(2)數(shù)列求數(shù)列的前項和
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)h(x)=ax3+bx2+cx+d(a≠0)圖象的對稱中心為M(x0 , h(x0)),記函數(shù)h(x)的導函數(shù)為g(x),則有g(shù)′(x0)=0,設(shè)函數(shù)f(x)=x3﹣3x2+2,則f( )+f( )+…+f( )+f( )= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在R上的可導函數(shù)f(x)的導函數(shù)為f'(x),滿足f'(x)<f(x),且f(x+3)為偶函數(shù),f(6)=1,則不等式f(x)>ex的解集為( )
A.(﹣∞,0)
B.(0,+∞)
C.(1,+∞)
D.(4,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知(x+ )n展開式的二項式系數(shù)之和為256
(1)求n;
(2)若展開式中常數(shù)項為 ,求m的值;
(3)若展開式中系數(shù)最大項只有第6項和第7項,求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com