【題目】如圖是一次考試結(jié)果的頻數(shù)分布直方圖,根據(jù)該圖可估計,這次考試的平均分數(shù)為.

【答案】46
【解析】由題中頻數(shù)分布直方圖,可知有4人成績在[0,20)之間,其分數(shù)之和估計為4×10=40;有8人成績在[20,40)之間,其分數(shù)之和估計為8×30=240;有10人成績在[40,60)之間,其分數(shù)之和估計為10×50=500;有6人成績在[60,80)之間,其分數(shù)之和估計為6×70=420;有2人成績在[80,100)之間,其分數(shù)之和估計為2×90=180,則考生總?cè)藬?shù)為4+8+10+6+2=30,總分數(shù)為40+240+500+420+180=1 380,平均數(shù)= =46.
【考點精析】解答此題的關(guān)鍵在于理解頻率分布表的相關(guān)知識,掌握第一步,求極差;第二步,決定組距與組數(shù);第三步,確定分點,將數(shù)據(jù)分組;第四步,列頻率分布表,以及對頻率分布直方圖的理解,了解頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐 中,側(cè)面 底面 ,側(cè)棱 ,底面 為直角梯形,其中 中點.

(1)求證: 平面 ;
(2)求異面直線 所成角的余弦值;
(3)線段 上是否存在 ,使得它到平面 的距離為 ?若存在,求出 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為做好2022年北京冬季奧運會的宣傳工作,組委會計劃從某大學(xué)選取若干大學(xué)生志愿者,某記者在該大學(xué)隨機調(diào)查了1000名大學(xué)生,以了解他們是否愿意做志愿者工作,得到的數(shù)據(jù)如表所示:

愿意做志愿者工作

不愿意做志愿者工作

合計

男大學(xué)生

610

女大學(xué)生

90

合計

800


(1)根據(jù)題意完成表格;
(2)是否有95%的把握認為愿意做志愿者工作與性別有關(guān)? 參考公式及數(shù)據(jù): ,其中n=a+b+c+d.

P(K2≥K0

0.25

0.15

0.10

0.05

0.025

K0

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班級有50名學(xué)生,其中有30名男生和20名女生.隨機詢問了該班五名男生和五名女生在某次數(shù)學(xué)測驗中的成績,五名男生的成績分別為86,94,88,92,90,五名女生的成績分別為88,93,93,88,93.下列說法一定正確的是( )
A.這種抽樣方法是一種分層抽樣
B.這種抽樣方法是一種系統(tǒng)抽樣
C.這五名男生成績的方差大于這五名女生成績的方差
D.該班男生成績的平均數(shù)小于該班女生成績的平均數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)員在一次射擊測試中射靶6次,命中環(huán)數(shù)如下:9,5,8,4,6,10,
則:
平均命中環(huán)數(shù)為;命中環(huán)數(shù)的方差為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對某校高三年級學(xué)生參加社區(qū)服務(wù)次數(shù)進行統(tǒng)計,隨機抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù),根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖.

分組

頻數(shù)

頻率

[10,15)

10

0.25

[15,20)

24

n

[20,25)

m

p

[25,30]

2

0.05

合計

M

1


(1)求出表中M,p及圖中a的值;
(2)若該校高三學(xué)生有240人,試估計該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[10,15)內(nèi)的人數(shù);
(3)估計這次學(xué)生參加社區(qū)服務(wù)人數(shù)的眾數(shù)、中位數(shù)以及平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓心為C的圓經(jīng)過點A(1,1)和B(2,-2),且圓心C在直線l:x-y+1=0上,求圓心為C的圓的標準方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 上單調(diào)遞增,
(1)若函數(shù) 有實數(shù)零點,求滿足條件的實數(shù) 的集合
(2)若對于任意的 時,不等式 恒成立,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一臺機器由于使用時間較長,生產(chǎn)的零件有一些缺損,按不同轉(zhuǎn)速生產(chǎn)出來的零件有缺損的統(tǒng)計數(shù)據(jù)如下表所示.

轉(zhuǎn)速x(轉(zhuǎn)/秒)

16

14

12

8

每小時生產(chǎn)有缺損零件數(shù)y(個)

11

9

8

5


(1)作出散點圖;
(2)如果y與x線性相關(guān),求出回歸直線方程;
(3)若實際生產(chǎn)中,允許每小時的產(chǎn)品中有缺損的零件最多為10個,那么機器的運轉(zhuǎn)速度應(yīng)控制在什么范圍內(nèi)?

查看答案和解析>>

同步練習(xí)冊答案