函數(shù)y=f(x)在區(qū)間(-2,2)上的圖象是連續(xù)的,且方程f(x)=0在(-2,2)上僅有一個(gè)實(shí)根0,則f(-1)·f(1)的值( )
A.大于0 B.小于0
C.等于0 D.無(wú)法確定
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù).
(1)當(dāng)a=3時(shí),求f(x)的零點(diǎn);
(2)求函數(shù)y=f (x)在區(qū)間[1,2]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
用二分法求函數(shù)y=f(x)在區(qū)間(2,4)上的唯一零點(diǎn)的近似值時(shí),驗(yàn)證f(2)·f(4)<0,取區(qū)間(2,4)的中點(diǎn)x1==3,計(jì)算得f(2)·f(x1)<0,則此時(shí)零點(diǎn)x0所在的區(qū)間是 ( )
A.(2,4) B.(2,3)
C.(3,4) D.無(wú)法確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
若函數(shù)y=f(x)在區(qū)間[0,4]上的圖象是連續(xù)不斷的曲線,且方程f(x)=0在(0,4)內(nèi)僅有一個(gè)實(shí)數(shù)根,則f(0)·f(4)的值( )
A.大于0 B.小于0 C.等于0 D.無(wú)法判斷
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江西省高三第四次月考文科數(shù)學(xué) 題型:解答題
(本小題滿分12分)已知關(guān)于x的二次函數(shù)f(x)=ax2-2bx+1.
(1)已知集合P={-2,1,2 },Q={-1,1,2},分別從集合P和Q中隨機(jī)取一個(gè)數(shù)作為a和b,求函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率;
(2)在區(qū)域 內(nèi)隨機(jī)任取一點(diǎn)(a,b).求函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省南京市高三年級(jí)學(xué)情調(diào)研卷數(shù)學(xué) 題型:解答題
(本小題滿分16分)已知函數(shù)f(x)=x2-(1+2a)x+alnx(a為常數(shù)).
(1)當(dāng)a=-1時(shí),求曲線y=f(x)在x=1處切線的方程;
(2)當(dāng)a>0時(shí),討論函數(shù)y=f(x)在區(qū)間(0,1)上的單調(diào)性,并寫出相應(yīng)的單調(diào)區(qū)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com