【題目】“中國式過馬路”存在很大的交通安全隱患.某調(diào)查機(jī)構(gòu)為了解路人對(duì)“中國式過馬路”的態(tài)度是否與性別有關(guān),從馬路旁隨機(jī)抽取30名路人進(jìn)行了問卷調(diào)查,得到了如下列聯(lián)表:

男性

女性

合計(jì)

反感

10

不反感

8

合計(jì)

30

已知在這30人中隨機(jī)抽取1人抽到反感“中國式過馬路”的路人的概率是
(Ⅰ)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整(在答題卡上直接填寫結(jié)果,不需要寫求解過程),并據(jù)此資料分析反感“中國式過馬路”與性別是否有關(guān)?
(Ⅱ)若從這30人中的女性路人中隨機(jī)抽取2人參加一活動(dòng),記反感“中國式過馬路”的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
提示:可參考試卷第一頁的公式.

【答案】解:(Ⅰ)

男性

女性

合計(jì)

反感

10

6

16

不反感

6

8

14

合計(jì)

16

14

30

設(shè)H0:反感“中國式過馬路”與性別與否無關(guān)

由已知數(shù)據(jù)得:

所以,沒有充足的理由認(rèn)為反感“中國式過馬路”與性別有關(guān).

(Ⅱ)X的可能取值為0,1,2. , ,

所以X的分布列為:

X

0

1

2

P

X的數(shù)學(xué)期望為:


【解析】(I)根據(jù)在全部30人中隨機(jī)抽取1人抽到中國式過馬路的概率,做出中國式過馬路的人數(shù),進(jìn)而做出男生的人數(shù),填好表格.再根據(jù)所給的公式,代入數(shù)據(jù)求出臨界值,把求得的結(jié)果同臨界值表進(jìn)行比較,看出有多大的把握說明反感“中國式過馬路”與性別是否有關(guān).(II)反感“中國式過馬路”的人數(shù)為X的可能取值為0,1,2,通過列舉得到事件數(shù),分別計(jì)算出它們的概率,最后利用列出分布列,求出期望即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長都相等的正三棱柱中,分別為的中點(diǎn).

(1)求證:平面;

(2)求證:平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】煉鋼是一個(gè)氧化降碳的過程,鋼水含碳量的多少直接影響冶煉時(shí)間的長短,因此必須掌握鋼水含碳量和冶煉時(shí)間的關(guān)系.如果已測(cè)得爐料熔化完畢時(shí),鋼水的含碳量x與冶煉時(shí)間y(從爐料熔化完畢到出鋼的時(shí)間)的一些數(shù)據(jù),如下表所示:

x/0.01%

104

180

190

177

147

134

150

191

204

121

y/min

100

200

210

185

155

135

170

205

235

125

(1)作出散點(diǎn)圖,你能從散點(diǎn)圖中發(fā)現(xiàn)含碳量與冶煉時(shí)間的一般規(guī)律嗎?

(2)求回歸直線方程.

(3)預(yù)測(cè)當(dāng)鋼水含碳量為160時(shí),應(yīng)冶煉多少分鐘?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在底面是菱形的四棱錐P﹣ABCD中,∠ABC=60°,PA=AC=a,PB=PD= ,點(diǎn)E在PD上,且PE:ED=2:1.
(Ⅰ)證明PA⊥平面ABCD;
(Ⅱ)求以AC為棱,EAC與DAC為面的二面角θ的大。
(Ⅲ)在棱PC上是否存在一點(diǎn)F,使BF∥平面AEC?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

(1)若是奇函數(shù),求的值,并判斷的單調(diào)性(不用證明);

(2)若函數(shù)在區(qū)間(0,1)上有兩個(gè)不同的零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,并在兩種坐標(biāo)系中取相同的長度單位,已知直線l的參數(shù)方程為 ,(t為參數(shù),0<θ<π),曲線C的極坐標(biāo)方程為ρsin2α﹣2cosα=0.
(1)求曲線C的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C相交于A,B兩點(diǎn),當(dāng)θ變化時(shí),求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,平面平面,四邊形為平行四邊形, , , , .

(1)求證: 平面;

(2)求到平面的距離;

(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某游樂園的摩天輪最高點(diǎn)距離地面108米,直徑長是98米,均速旋轉(zhuǎn)一圈需要18分鐘.如果某人從摩天輪的最低點(diǎn)處登上摩天輪并開始計(jì)時(shí),那么:

(1)當(dāng)此人第四次距離地面米時(shí)用了多少分鐘?

(2)當(dāng)此人距離地面不低于米時(shí)可以看到游樂園的全貌,求摩天輪旋轉(zhuǎn)一圈中有多少分鐘可以看到游樂園的全貌?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)的圖象和直線無交點(diǎn),給出下列結(jié)論

①方程一定沒有實(shí)數(shù)根;

②若,則必存在實(shí)數(shù),使;

③若,則不等式對(duì)一切實(shí)數(shù)都成立;

④函數(shù)的圖象與直線也一定沒有交點(diǎn)

其中正確的結(jié)論個(gè)數(shù)有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案