函數(shù)若f(1)+f(a)=0,則a的所有可能的值為

[  ]

A.1

B.

C.

D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•黃埔區(qū)一模)對于函數(shù)y=f(x)與常數(shù)a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個“P數(shù)對”;若f(2x)≥af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個“類P數(shù)對”.設(shè)函數(shù)f(x)的定義域為R+,且f(1)=3.
(1)若(1,1)是f(x)的一個“P數(shù)對”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一個“P數(shù)對”,且當(dāng)x∈[1,2)時f(x)=k-|2x-3|,求f(x)在區(qū)間[1,2n)(n∈N*)上的最大值與最小值;
(3)若f(x)是增函數(shù),且(2,-2)是f(x)的一個“類P數(shù)對”,試比較下列各組中兩個式子的大小,并說明理由.
①f(2-n)與2-n+2(n∈N*);
②f(x)與2x+2(x∈(0,1]).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:若函數(shù)f(x)的圖象經(jīng)過變換T后所得圖象對應(yīng)的函數(shù)與f(x)的值域相同,則稱變換T是f(x)的同值變換.下面給出了四個函數(shù)與對應(yīng)的變換:
(1)f(x)=(x-1)2,T1將函數(shù)f(x)的圖象關(guān)于y軸對稱;
(2)f(x)=2x-1-1,T2將函數(shù)f(x)的圖象關(guān)于x軸對稱;
(3)f(x)=
x
x+1
,T3將函數(shù)f(x)的圖象關(guān)于點(-1,1)對稱;
(4)f(x)=sin(x+
π
3
),T4將函數(shù)f(x)的圖象關(guān)于點(-1,0)對稱.
其中T是f(x)的同值變換的有
(1)(3)(4)
(1)(3)(4)
.(寫出所有符合題意的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

定義:若函數(shù)f(x)的圖象經(jīng)過變換T后所得圖象對應(yīng)的函數(shù)與f(x)的值域相同,則稱變換T是f(x)的同值變換.下面給出了四個函數(shù)與對應(yīng)的變換:
(1)f(x)=(x-1)2,T1將函數(shù)f(x)的圖象關(guān)于y軸對稱;
(2)f(x)=2x-1-1,T2將函數(shù)f(x)的圖象關(guān)于x軸對稱;
(3)f(x)=
x
x+1
,T3將函數(shù)f(x)的圖象關(guān)于點(-1,1)對稱;
(4)f(x)=sin(x+
π
3
),T4將函數(shù)f(x)的圖象關(guān)于點(-1,0)對稱.
其中T是f(x)的同值變換的有______.(寫出所有符合題意的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)與已知條件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函數(shù)y=f(x)-1的零點

(2)因為f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,則f(-1)=f(1)與已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函數(shù)是奇函數(shù)

已知某地每單位面積的菜地年平均使用氮肥量與每單位面積蔬菜年平均產(chǎn)量之間有的關(guān)系如下數(shù)據(jù):

年份

x(kg)

y(t)

1985

70

5.1

1986

74

6.0

1987

80

6.8

1988

78

7.8

1989

85

9.0

1990

92

10.2

1991

90

10.0

1992

95

12.0

1993

92

11.5

1994

108

11.0

1995

115

11.8

1996

123

12.2

1997

130

12.5

1998

138

12.8

1999

145

13.0

(1)求xy之間的相關(guān)系數(shù),并檢驗是否線性相關(guān);

(2)若線性相關(guān),則求蔬菜產(chǎn)量y與使用氮肥x之間的回歸直線方程,并估計每單位面積施150kg時,每單位面積蔬菜的平均產(chǎn)量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)與已知條件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函數(shù)y=f(x)-1的零點

(2)因為f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,則f(-1)=f(1)與已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函數(shù)是奇函數(shù)

在一次惡劣氣候的飛機航程中,調(diào)查了男女乘客在飛機上暈機的情況:男乘客暈機的有24人,不暈機的有31人;女乘客暈機的有8人,不暈機的有26人。請你根據(jù)所給數(shù)據(jù)判定是否在惡劣氣候飛行中男人比女人更容易暈機?

查看答案和解析>>

同步練習(xí)冊答案