【題目】設(shè)橢圓,定義橢圓C的“相關(guān)圓”E為:
.若拋物線
的焦點(diǎn)與橢圓C的右焦點(diǎn)重合,且橢圓C的短軸長與焦距相等.
(1)求橢圓C及其“相關(guān)圓”E的方程;
(2)過“相關(guān)圓”E上任意一點(diǎn)P作其切線l,若l 與橢圓交于A,B兩點(diǎn),求證:
為定值(
為坐標(biāo)原點(diǎn));
(3)在(2)的條件下,求面積的取值范圍.
【答案】(1),
;(2)證明見解析;(3)
.
【解析】
(1)由題設(shè)知,又
,從而可得
,得橢圓方程,及相關(guān)圓方程;
(2)對直線斜率進(jìn)行討論,斜率不存在時,直接寫出直線
方程,求出
坐標(biāo),得
,
斜率存在時,設(shè)直線方程為
,與橢圓方程聯(lián)立方程組,消元后得關(guān)于
的二次方程,有韋達(dá)定理得
,由直線與圓相切得
關(guān)系,計算
也可得
,定值.
(3)由于是“相關(guān)圓”半徑,所以
,結(jié)合韋達(dá)定理求得
,并得到其范圍,從而得面積的范圍.
(1)拋物線的焦點(diǎn)是
,與橢圓的一個焦點(diǎn)重合,∴
,又
,所以
,
橢圓方程為,“相關(guān)圓”
的方程為
.
(2)當(dāng)直線斜率不存在時,不妨設(shè)其方程為
,則
,可得
.
當(dāng)直線斜率存在時,設(shè)其方程為
,設(shè)
,由
得
,
,即
,
由韋達(dá)定理得,
.
因?yàn)橹本€與圓相切,所以
,整理得
,
所以,所以
,
,為定值.
(3)由于,因此求
面積的取值范圍只要求弦長
的取值范圍.
當(dāng)直線斜率不存在時,
,
,
當(dāng)直線斜率存在時,
,
時,
0,
時,
,
∴,即
,當(dāng)且僅當(dāng)
即
時,
.
所以的取值范圍是
,
故面積的取值范圍是
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示:湖面上甲、乙、丙三艘船沿著同一條直線航行,某一時刻,甲船在最前面的點(diǎn)處,乙船在中間
點(diǎn)處,丙船在最后面的
點(diǎn)處,且
.一架無人機(jī)在空中的
點(diǎn)處對它們進(jìn)行數(shù)據(jù)測量,在同一時刻測得
,
.(船只與無人機(jī)的大小及其它因素忽略不計)
(1)求此時無人機(jī)到甲、丙兩船的距離之比;
(2)若此時甲、乙兩船相距100米,求無人機(jī)到丙船的距離.(精確到1米)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列、
滿足:
,
,
,
.
(1)求,
,
,
;
(2)求證:數(shù)列是等差數(shù)列,并求
的通項(xiàng)公式;
(3)設(shè),若不等式
對任意
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】部分與整體以某種相似的方式呈現(xiàn)稱為分形,一個數(shù)學(xué)意義上分形的生成是基于一個不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).分形幾何學(xué)不僅讓人們感悟到科學(xué)與藝木的融合,數(shù)學(xué)與藝術(shù)審美的統(tǒng)一,而且還有其深刻的科學(xué)方法論意義.如圖,由波蘭數(shù)學(xué)家謝爾賓斯基1915年提出的謝爾賓斯基三角形就屬于-種分形,具體作法是取一個實(shí)心三角形,沿三角形的三邊中點(diǎn)連線,將它分成4個小三角形,去掉中間的那一個小三角形后,對其余3個小三角形重復(fù)上述過程逐次得到各個圖形.
若在圖④中隨機(jī)選�。c(diǎn),則此點(diǎn)取自陰影部分的概率為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】任意實(shí)數(shù),
,定義
,設(shè)函數(shù)
,數(shù)列
是公比大于0的等比數(shù)列,且
,
,則
____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)列滿足
則稱
為
數(shù)列.記
(1)若為
數(shù)列,且
試寫出
的所有可能值;
(2)若為
數(shù)列,且
求
的最大值;
(3)對任意給定的正整數(shù)是否存在
數(shù)列
使得
?若存在,寫出滿足條件的一個
數(shù)列
;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線(
),過點(diǎn)
(
)的直線
與
交于
、
兩點(diǎn).
(1)若,求證:
是定值(
是坐標(biāo)原點(diǎn));
(2)若(
是確定的常數(shù)),求證:直線
過定點(diǎn),并求出此定點(diǎn)坐標(biāo);
(3)若的斜率為1,且
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且函數(shù)
的圖象與函數(shù)
的圖象關(guān)于直線
對稱.
(1)若存在,使等式
成立,求實(shí)數(shù)m的最大值和最小值
(2)若當(dāng)時不等式
恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)有800名學(xué)員參加交通法規(guī)考試,考試成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:,
,
,
,
,規(guī)定90分及以上為合格:
(1)求圖中a的值;
(2)根據(jù)頻率分布直方圖估計該地區(qū)學(xué)員交通法規(guī)考試合格的概率;
(3)若三個人參加交通法規(guī)考試,估計這三個人至少有兩人合格的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com