已知命題p:不等式|x|≥m的解集是R,命題q:f(x)=
2-m
x
在區(qū)間(0,+∞)上是減函數(shù),若命題“p∨q”為真,則實數(shù)m的范圍是______.
由不等式|x|≥m的解集是R,得m≤0,
故命題p為真命題時,m≤0;
由f(x)=
2-m
x
在區(qū)間(0,+∞)上是減函數(shù),得2-m>0,即m<2,
故命題q為真命題時,m<2,
由復合命題真值表知,若命題“p∨q”為真時,命題p、q至少一個為真,
∴實數(shù)m的范圍是m<2.
故答案是(-∞,2).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知命題:方程有兩個不相等的負實根;命題:方程無實根;又為真,為假,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知命題P:4-2x≥0;命題q;
1
x+1
<0
,若p∧(¬q)為真命題,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

給出兩個命題:p:平面內(nèi)直線l與拋物線y2=2x有且只有一個交點,則直線l與該拋物線相切;命題q:過雙曲線x2-
y2
4
=1
右焦點F的最短弦長是8.則(  )
A.q為真命題B.“p或q”為假命題
C.“p且q”為真命題D.“p或q”為真命題

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

命題“若x2≥4,則x≤-2或x≥2”的逆否命題是( 。
A.若x2<4,則-2<x<2B.若x<-2或x>2,則x2>4
C.若-2<x<2,則x2<4D.若x<-2或x>2,則x2<4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設命題p:方程x2-mx+
1
4
=0
沒有實數(shù)根.命題q:方程
x2
m-2
+
y2
m
=1
表示的曲線是雙曲線.若命題p∧q為真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知⊙C1和⊙C2的半徑分別為r1,r2,命題p:若兩圓相離,則|C1C2|>r1+r2;命題q:若兩圓相交,則|C1C2|<r1+r2;則(  )
A.p∧q是真命題B.p∨q是假命題
C.¬p是真命題D.¬q是真命題

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知命題P:復數(shù)z1=3-3i,復數(shù)z2=
m2-4m-10
m+2
+(m2-2m-12)i,(m∈R)
,z1+z2是虛數(shù);命題Q:關于x的方程2x2-4(m-1)x+m2+7=0的兩根之差的絕對值小于2.若P∧Q為真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

命題“若m>0,則方程x2+x-m=0有實數(shù)根.”的逆否命題是______.

查看答案和解析>>

同步練習冊答案