已知P是△ABC所在平面內(nèi)的一點(diǎn),若
CB
-
PB
PA
,其中λ∈R,則點(diǎn)P一定在( 。
A、AC邊所在的直線上
B、BC邊所在的直線上
C、AB邊所在的直線上
D、△ABC的內(nèi)部
分析:找出向量
CP
與向量
PA
的關(guān)系,即可確定答案.
解答:解:∵
CB
-
PB
PA

又,
PB
=
PC
+
CB

CB
-(
PC
+
CB
)
=λ
PA

即,-
PC
PA
CP
PA

CP
PA

∴P點(diǎn)在AC邊所在直線上.
故選A
點(diǎn)評(píng):本題主要考查向量的共線定理.要證明三點(diǎn)共線時(shí)一般轉(zhuǎn)化為證明向量的共線問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知P是△ABC所在平面內(nèi)一點(diǎn),
PB
+
PC
+2
PA
=
0
,現(xiàn)將一粒黃豆隨機(jī)撒在△ABC內(nèi),則黃豆落在△APC內(nèi)的概率是( 。
A、
1
4
B、
1
3
C、
2
3
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P是△ABC所在平面外一點(diǎn),點(diǎn)O是點(diǎn)P在平面ABC上的射影.若PA=PB=PC,則O是△ABC的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P是△ABC所在平面α外一點(diǎn),且PA,PB,PC與平面α所成的角相等,則點(diǎn)P在平面α上的射影一定是△ABC( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P是△ABC所在平面內(nèi)任意一點(diǎn),G是△ABC所在平面內(nèi)一定點(diǎn),且
PA
+
PB
+
PC
=3
PG
,則G是△ABC的(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案