已知雙曲線的左,右焦點(diǎn)分別為,點(diǎn)P在雙曲線的右支上,且,求此雙曲線的離心率e的最大值.
【解題思路】這是一個(gè)存在性問題,可轉(zhuǎn)化為最值問題來解決。
(方法1)由定義知,又已知,解得,,在中,由余弦定理,得,要求的最大值,即求的最小值,當(dāng)時(shí),解得.即的最大值為.
(方法2) ,
雙曲線上存在一點(diǎn)P使,等價(jià)于
(方法3)設(shè),由焦半徑公式得,∵,∴,∴,∵,∴,∴的最大值為.
【名師指引】(1)解法1用余弦定理轉(zhuǎn)化,解法2用定義轉(zhuǎn)化,解法3用焦半徑轉(zhuǎn)化;
(2)點(diǎn)P在變化過程中,的范圍變化值得探究;
(3)運(yùn)用不等式知識轉(zhuǎn)化為的齊次式是關(guān)鍵
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
9 |
y2 |
16 |
PF2 |
F1F2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年貴州省高三第一次月考文科數(shù)學(xué) 題型:解答題
(本小題滿分12分)已知橢圓的方程為 ,雙曲線的左、右焦
點(diǎn)分別是的左、右頂點(diǎn),而的左、右頂點(diǎn)分別是的左、右焦點(diǎn).
(1)求雙曲線的方程;
(2)若直線與雙曲線C2恒有兩個(gè)不同的交點(diǎn)A和B,求的范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年廣西桂林市高三第一次聯(lián)合調(diào)研數(shù)學(xué)試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年廣西桂林市高三第一次調(diào)研數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com