已知函數(shù)為常數(shù)),且在點(diǎn)處的切線平行于軸.

(Ⅰ)求實(shí)數(shù)的值;

(Ⅱ)求函數(shù)的單調(diào)區(qū)間.

 

【答案】

(Ⅰ);(Ⅱ)函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為

【解析】

試題分析:(Ⅰ)根據(jù)導(dǎo)數(shù)的幾何意義,利用在點(diǎn)處的切線平行于軸,得到,即可求得;(Ⅱ)解不等式即可求出函數(shù)的單調(diào)遞增區(qū)間為和單調(diào)遞減區(qū)間.

試題解析:

(Ⅰ)∵,∴;

又∵在點(diǎn)處的切線平行于軸,

,得.                              5分

(Ⅱ)由(Ⅰ)知,∴;     8分

,或;由,.                  10分

∴ 函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.           12分.

考點(diǎn):導(dǎo)數(shù)的幾何意義、導(dǎo)數(shù)的應(yīng)用、解不等式.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇蘇北四市高三第一次質(zhì)量檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)為常數(shù)),其圖象是曲線

1)當(dāng)時(shí),求函數(shù)的單調(diào)減區(qū)間;

2)設(shè)函數(shù)的導(dǎo)函數(shù)為,若存在唯一的實(shí)數(shù),使得同時(shí)成立,求實(shí)數(shù)的取值范圍;

3)已知點(diǎn)為曲線上的動(dòng)點(diǎn),在點(diǎn)處作曲線的切線與曲線交于另一點(diǎn),在點(diǎn)處作曲線的切線,設(shè)切線的斜率分別為.問:是否存在常數(shù),使得?若存在,求出的值;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016屆浙江省寧波市八校高一上學(xué)期期末聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)為常數(shù),且.

1)當(dāng)時(shí),求函數(shù)的最小值(用表示);

2)是否存在不同的實(shí)數(shù)使得,,并且,若存在,求出實(shí)數(shù)的取值范圍;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河南省南陽市高三9月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分10分)

已知函數(shù)為常數(shù),)的圖象過點(diǎn).

(1)求實(shí)數(shù)的值;

(2)若函數(shù),試判斷函數(shù)的奇偶性,并說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年廣東省高二上學(xué)期段考數(shù)學(xué)卷 題型:解答題

已知函數(shù)為常數(shù),),滿足,且有兩個(gè)相同的解。

(1)求的表達(dá)式;

(2)設(shè)數(shù)列滿足,且,求證:數(shù)列是等差數(shù)列。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年吉林省高三第一次模擬考試?yán)砜茢?shù)學(xué)卷 題型:解答題

(本小題滿分12分)

已知函數(shù)為常數(shù)),直線l與函數(shù)的圖象都相切,且l與函數(shù)的圖象的切點(diǎn)的橫坐標(biāo)為l.

(Ⅰ)求直線l的方程及a的值;

(Ⅱ)當(dāng)k>0時(shí),試討論方程的解的個(gè)數(shù).

 

查看答案和解析>>

同步練習(xí)冊答案