求證:

(1);

(2)

答案:略
解析:

證明:當(dāng)n為奇數(shù)時(shí),設(shè)n=2k1(kÎ Z)

(1)sin(nπ+α)=sin[(2k1)π+α)

=sin(-π+α)=sin(π-α)=sinα=

(2)cos(nπ+α)=cos|(2k1)π+α|=cos(-π+α)

=cos(π-α)=cosα=

當(dāng)n為偶數(shù)時(shí),設(shè)n=2k(kÎ Z),則

(1)sin(nπ+α)=sin(2kπ+α)=sinα=;

(2)cos(nπ+α)=cos(2kπ+α)=cosα=

綜上所述,原命題成立.

根據(jù)正弦、余弦函數(shù)的誘導(dǎo)公式的特點(diǎn),應(yīng)對(duì)n分奇數(shù)、偶數(shù)討論.

當(dāng)涉及與整數(shù)n有關(guān)的誘導(dǎo)公式應(yīng)用時(shí),應(yīng)注意分n為奇數(shù)、偶數(shù)討論.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}滿(mǎn)足:對(duì)任意的正整數(shù)m,n;s,t,若m+n=s+t,則
(1+am)(1+an)
am+an
=
(1+as)(1+at)
as+at
,且a1=3,a2=-
1
3

(1)求證:
(1-am)(1-an)
am+an
=
(1-as)(1-at)
as+at

(2)求數(shù)列{an}的通項(xiàng)公式;
(3)記cn=a2n-a2n+1(n∈N*),求證:c1+c2+…+cn
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有一個(gè)項(xiàng)數(shù)為10的實(shí)數(shù)等比數(shù)列{an},Sn(n≤10)表示該數(shù)列的前n項(xiàng)和.當(dāng)2≤n≤10時(shí),若Sk,S10,S7成等差數(shù)列,求證ak-1,a9,a6也成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2+ln(x+1).
(Ⅰ)當(dāng)a=-
1
4
時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)x∈[0,+∞)時(shí),不等式f(x)≤x恒成立,求實(shí)數(shù)a的取值范圍.
(Ⅲ)求證:(1+
2
2×3
)(1+
4
3×5
)(1+
8
5×9
)•…•[1+
2n
(2n-1+1)(2n+1)
]<e
(其中n∈N*,e是自然對(duì)數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0,b>0,且a+b=1,求證:(1+
1
a
)(1+
1
b
)≥9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b,c∈(0,1).
(1)若(1-a)b>
1
4
,求證:
(1-a)+b
2
1
2

(2)求證:(1-a)b,(1-b)c,(1-c)a三數(shù)中至少有一個(gè)小于或等于
1
4

查看答案和解析>>

同步練習(xí)冊(cè)答案