中,,求證:

   1;(2

 

答案:
解析:

     

     

     

     

     

     

       從結(jié)論出發(fā)去追尋使結(jié)論成立的條件,即對(duì)結(jié)論進(jìn)行等價(jià)變形(分析法

      

      

       

       

        這在(1)中得證

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在A,B,C,D四小題中只能選做2題,每題10分,共計(jì)20分.
A、如圖,AB為⊙O的直徑,BC切⊙O于B,AC交⊙O于P,CE=BE,E在BC上.求證:PE是⊙O的切線.
B、設(shè)M是把坐標(biāo)平面上的點(diǎn)的橫坐標(biāo)伸長(zhǎng)到2倍,縱坐標(biāo)伸長(zhǎng)到3倍的伸壓變換.
(1)求矩陣M的特征值及相應(yīng)的特征向量;
(2)求逆矩陣M-1以及橢圓
x2
4
+
y2
9
=1
在M-1的作用下的新曲線的方程.
C、已知某圓的極坐標(biāo)方程為:ρ2-4
2
ρcos(θ-
π
4
)+6=0

(Ⅰ)將極坐標(biāo)方程化為普通方程;并選擇恰當(dāng)?shù)膮?shù)寫(xiě)出它的參數(shù)方程;
(Ⅱ)若點(diǎn)P(x,y)在該圓上,求x+y的最大值和最小值.
D、若關(guān)于x的不等式|x+2|+|x-1|≥a的解集為R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,長(zhǎng)方體ABCD-A1B1C1D1中,AA1=AD=a,AB=2a,E為A1B1的中點(diǎn)在.
(Ⅰ)求證:AE⊥平面BCE;
(II)求二面角D-BE-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文)已知在四棱錐G-ABCD中,(如圖)ABCD是正方形,且邊長(zhǎng)為2,正前方ABCDG面ABCD⊥面ABG,AG=BG.
( I)在四棱錐G-ABCD中,過(guò)點(diǎn)B作平面AGC的垂線,若垂足H在CG上,求證:面AGD⊥面BGC
( II)在( I)的條件下,求三棱錐D-ACG的體積及其外接球的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:044

中,,求證:

   1;(2

 

查看答案和解析>>

同步練習(xí)冊(cè)答案