已知函數(shù)滿足:對(duì)于任意實(shí)數(shù),都有恒成立,且當(dāng)時(shí),恒成立;
(1)求的值,并例舉滿足題設(shè)條件的一個(gè)特殊的具體函數(shù);
(2)判定函數(shù)在R上的單調(diào)性,并加以證明;
(3)若函數(shù)(其中)有三個(gè)零點(diǎn),求的取值范圍.
(1)(2)函數(shù)f(x)在R上單調(diào)遞增(3)
【解析】
試題分析:解:(1).取x=y=0代入題設(shè)中的?式得: 2分
特例:(不唯一,只要特例符合題設(shè)條件就給2分) 4分
(驗(yàn)證:,,)
(2).判定:在R上單調(diào)遞增(判斷正確給1分) 5分
證明:任取且,則
,所以函數(shù)f(x)在R上單調(diào)遞增 9分
(3).由
又由(2)知f(x)在R上單調(diào)遞增,所以
.10分
構(gòu)造由
或,,于是,題意等價(jià)于:
與的圖象有三個(gè)不同的交點(diǎn)(如上圖,不妨設(shè)這三個(gè)零點(diǎn)),則,為的兩根,即是一元二次方程的兩根,,∴,
(變量歸一法),由在k∈(0,1)上單調(diào)遞減,于是可得: 14分
考點(diǎn):函數(shù)的性質(zhì),函數(shù)與方程
點(diǎn)評(píng):解決的關(guān)鍵是利用函數(shù)的定義以及函數(shù)與方程的關(guān)系來求解得到,結(jié)合數(shù)形結(jié)合思想來得到,屬于基礎(chǔ)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x2+2x+n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆上海市高三第一學(xué)期期中理科數(shù)學(xué)試卷 題型:解答題
若定義在上的函數(shù)滿足條件:存在實(shí)數(shù)且,使得:
⑴ 任取,有(是常數(shù));
⑵ 對(duì)于內(nèi)任意,當(dāng),總有。
我們將滿足上述兩條件的函數(shù)稱為“平頂型”函數(shù),稱為“平頂高度”,稱為“平頂寬度”。根據(jù)上述定義,解決下列問題:
(1)函數(shù)是否為“平頂型”函數(shù)?若是,求出“平頂高度”和“平頂寬度”;若不是,簡(jiǎn)要說明理由。
(2) 已知是“平頂型”函數(shù),求出 的值。
(3)對(duì)于(2)中的函數(shù),若在上有兩個(gè)不相等的根,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年高考試題(上海秋季)解析版(理) 題型:解答題
[番茄花園1] 本題共有3個(gè)小題,第1小題滿分3分,第2小題滿分5分,第3小題滿分10分。
若實(shí)數(shù)、、滿足,則稱比遠(yuǎn)離.
(1)若比1遠(yuǎn)離0,求的取值范圍;
(2)對(duì)任意兩個(gè)不相等的正數(shù)、,證明:比遠(yuǎn)離;
(3)已知函數(shù)的定義域.任取,等于和中遠(yuǎn)離0的那個(gè)值.寫出函數(shù)的解析式,并指出它的基本性質(zhì)(結(jié)論不要求證明).
23本題共有3個(gè)小題,第1小題滿分3分,第2小題滿分6分,第3小題滿分9分.
已知橢圓的方程為,點(diǎn)P的坐標(biāo)為(-a,b).
(1)若直角坐標(biāo)平面上的點(diǎn)M、A(0,-b),B(a,0)滿足,求點(diǎn)的坐標(biāo);
(2)設(shè)直線交橢圓于、兩點(diǎn),交直線于點(diǎn).若,證明:為的中點(diǎn);
(3)對(duì)于橢圓上的點(diǎn)Q(a cosθ,b sinθ)(0<θ<π),如果橢圓上存在不同的兩個(gè)交點(diǎn)、滿足,寫出求作點(diǎn)、的步驟,并求出使、存在的θ的取值范圍.
[番茄花園1]22.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年黑龍江省大慶市鐵人中學(xué)高三(上)第二次段考數(shù)學(xué)試卷(解析版) 題型:選擇題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com