已知函數(shù)f(x)=loga(x+1),g(x)=loga(4-2x)(a>0,且a≠1).
(1)求函數(shù)f(x)-g(x)的定義域;
(2)求使函數(shù)f(x)-g(x)的值為正數(shù)的x的取值范圍.
分析:(1)分別把f(x)和g(x)的解析式代入到f(x)-g(x)中,根據(jù)負數(shù)和0沒有對數(shù)得到x+1和4-2x都大于0,列出關于x的不等式組,求出不等式組的解集即為函數(shù)f(x)-g(x)的定義域;
(2)f(x)-g(x)的值正數(shù)即為f(x)-g(x)大于0,即f(x)大于g(x),將f(x)和g(x)的解析式代入后,分a大于0小于1和a大于1兩種情況由對數(shù)函數(shù)的單調性即可列出x的不等式,分別求出不等式的解集,即可得到相應滿足題意的x的取值范圍.
解答:解:(1)由題意可知,f(x)-g(x)=loga(x+1)-loga(4-2x),
x+1>0
4-2x>0

解得
x>-1
x<2
,
∴-1<x<2,
∴函數(shù)f(x)-g(x)的定義域是(-1,2).
(2)由f(x)-g(x)>0,得f(x)>g(x),即loga(x+1)>loga(4-2x),①
當a>1時,由①可得x+1>4-2x,解得x>1,又-1<x<2,
∴1<x<2;
當0<a<1時,由①可得x+1<4-2x,解得x<1,又-1<x<2,
∴-1<x<1.
綜上所述:當a>1時,x的取值范圍是(1,2);
當0<a<1時,x的取值范圍是(-1,1).
點評:此題考查學生會求對數(shù)函數(shù)的定義域,掌握對數(shù)函數(shù)的單調性,是一道綜合題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
(2)當a=1時,若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對于函數(shù)f(x)圖象上的不同兩點A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點M(x0,y0)(其中x0∈(x1,x2))使得點M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當x0=
x1+x2
2
時,又稱直線AB存在“中值伴侶切線”.試問:當x≥e時,對于函數(shù)f(x)圖象上不同兩點A、B,直線AB是否存在“中值伴侶切線”?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項和為Sn,則S2012的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點;
(Ⅱ)若直線l過點(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實數(shù)a的不同取值,寫出該函數(shù)的單調增區(qū)間;
(2)已知當x>0時,函數(shù)在(0,
6
)上單調遞減,在(
6
,+∞)上單調遞增,求a的值并寫出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經過原點的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案