【題目】執(zhí)行如圖所示的程序框圖,設(shè)當(dāng)箭頭a指向①處時,輸出的S的值為m,當(dāng)箭頭a指向②處時,輸出的S的值為n,則m+n=

【答案】14
【解析】解:當(dāng)箭頭指向①時,計(jì)算S和i如下:
i=1,S=0,S=1;
i=2,S=0,S=2;
i=3,S=0,S=3;
i=4,S=0,S=4;
i=5,結(jié)束.
∴S=m=4.
當(dāng)箭頭指向②時,計(jì)算S和i如下:
i=1,S=0,S=1;
i=2,S=3;
i=3,S=6;
i=4,S=10;
i=5,結(jié)束.
∴S=n=10.
∴m+n=14,
所以答案是:14.

【考點(diǎn)精析】掌握程序框圖是解答本題的根本,需要知道程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某公司生產(chǎn)一種品牌服裝的年固定成本為10萬元,且每生產(chǎn)1萬件,需要另投入1.9萬元.設(shè)R(x)(單位:萬元)為銷售收入,根據(jù)市場調(diào)查知R(x)= 其中x(單位:萬件)是年產(chǎn)量.

(1)寫出年利潤W(單位:萬元)關(guān)于年產(chǎn)量x的函數(shù)解析式.

(2)當(dāng)年產(chǎn)量為多少時,該公司在這一品牌服裝的生產(chǎn)中所獲年利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列語句中是命題的有________,其中是真命題的有_____(填序號).

①“垂直于同一條直線的兩個平面必平行嗎?”②“一個數(shù)不是正數(shù)就是負(fù)數(shù)”;③“在一個三角形中,大角所對的邊大于小角所對的邊”;④“x+y為有理數(shù),x,y都是有理數(shù)”;⑤作一個三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】假設(shè)每天從甲地去乙地的旅客人數(shù)X是服從正態(tài)分布N(800,502)的隨機(jī)變量,若一天中從甲地去乙地的旅客人數(shù)不超過900的概率為p0,p0的值為 ( )

A. 0.954 4 B. 0.682 6 C. 0.997 4 D. 0.977 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取500,測量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測量結(jié)果得如圖所示的頻率分布直方圖.

(1)求這500件產(chǎn)品質(zhì)量指標(biāo)值的樣本平均數(shù)和樣本方差s2(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).

(2)由直方圖可以認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)值Z服從正態(tài)分布N(μ,σ2),其中μ近似為樣本平均數(shù),σ2近似為樣本方差s2.

利用該正態(tài)分布,P(187.8<Z<212.2);

某用戶從該企業(yè)購買了100件這種產(chǎn)品,X表示這100件產(chǎn)品中質(zhì)量指標(biāo)值位于區(qū)間(187.8,212.2)上的產(chǎn)品件數(shù),利用的結(jié)果,E(X).

:≈12.2.

Z~N(μ,σ2),P(μ-σ<Z<μ+σ)=0.682 6,P(μ-2σ<Z<μ+2σ)=0.954 4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=2x3-3(a+1)x2+6ax+8,其中a∈R.

(1)若f(x)在x=3處取得極值,求常數(shù)a的值;

(2)若f(x)在(-∞,0)上為增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=lnx﹣ ax2﹣2x,其中a≤0.
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y=2x+b,求a﹣2b的值;
(2)討論函數(shù)f(x)的單調(diào)性;
(3)設(shè)函數(shù)g(x)=x2﹣3x+3,如果對于任意的x,t∈(0,1],都有f(x)≤g(t)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C所對邊的邊長,且C=,a+b=λc(其中λ>1).

(1)若λ=時,證明:△ABC為直角三角形;

(2)若·λ2,且c=3,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,已知a1≠0,2an﹣a1=S1Sn , n∈N*
(1)求a1a2 , 并求數(shù)列{an}的通項(xiàng)公式,
(2)求數(shù)列{nan}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊答案