已知f(x)=x2+ax+b(a,b∈R的定義域為[-1,1].
(1)記(2)求出(1)中的的表達(dá)式.
【答案】分析:(1)利用|f(x)|的最大值為M,絕對值不等式|a-b|+|a+b|≥|2a|推出
(2)利用(1)的條件和結(jié)論對-b,1+a+b,1-a+b討論,求出求出a、b的值,確定f(x)的表達(dá)式.
解答:解:(1)f(x)=x2+ax+b
M≥|f(0)|=|b|
M≥|f(1)|=|1+a+b|
M≥|f(-1)|=|1-a+b|
4M≥2|b|+|1+a+b|+|1-a+b|≥|(-2b)+(1+a+b)+(1-a+b)|=2
M≥
[-b,1+a+b,1-a+b同號時取等號]
(2)I.若-b,1+a+b,1-a+b均≥0,M=,則:
1+a+b≤…①
1-a+b≤…②
-b≤…③
①+②:2+2b≤1,b≤-
③:b≥-
∴b=-
代回①:a≤0,②:a≥0
∴a=0
f(x)=x2-
II.若-b,1+a+b,1-a+b均<0,M=,則:
0>1+a+b≥-…①
0>1-a+b≥-…②
0>-b≥-…③
①+③:0>1+a≥-1,-2≤a<-1
②+③:0>1-a≥-1,1<a≤2
無解
綜上:f(x)=x2-
點評:本題考查一元二次不等式的應(yīng)用,絕對值不等式的證明,分類討論思想,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2+ax+b(a,b∈R的定義域為[-1,1].
(1)記|f(x)|的最大值為M,求證:M≥
1
2
.
(2)求出(1)中的M=
1
2
時,f(x)
的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2+x+1,則f(
2
)
=
 
;f[f(
2
)
]=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2+2x,數(shù)列{an}滿足a1=3,an+1=f′(an)-n-1,數(shù)列{bn}滿足b1=2,bn+1=f(bn).
(1)求證:數(shù)列{an-n}為等比數(shù)列;
(2)令cn=
1
an-n-1
,求證:c2+c3+…+cn
2
3
;
(3)求證:
1
3
1
1+b1
+
1
1+b2
+…+
1
1+bn
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2-x+k,若log2f(2)=2,
(1)確定k的值;
(2)求f(x)+
9f(x)
的最小值及對應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2+(a+1)x+lg|a+2|(a≠-2,a∈R),
(Ⅰ)若f(x)能表示成一個奇函數(shù)g(x)和一個偶函數(shù)h(x)的和,求g(x)和h(x)的解析式;
(Ⅱ)若f(x)和g(x)在區(qū)間(-∞,(a+1)2]上都是減函數(shù),求a的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,比較f(1)和
16
的大小.

查看答案和解析>>

同步練習(xí)冊答案