若z∈C,且滿足
(Rez)2+(Imz)2
-z=1+2i,求復(fù)數(shù)z.
考點(diǎn):復(fù)數(shù)代數(shù)形式的混合運(yùn)算,復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:設(shè)z=a+bi,(a,b∈R).由
(Rez)2+(Imz)2
-z=1+2i,可得
a2+b2
-(a+bi)
=1+2i,利用復(fù)數(shù)相等即可得出.
解答: 解:設(shè)z=a+bi,(a,b∈R).
(Rez)2+(Imz)2
-z=1+2i,
a2+b2
-(a+bi)
=1+2i,
a2+b2
-a=1,-b=2,
解得b=-2,a=
3
2

z=
3
2
-2i
點(diǎn)評(píng):本題考查了復(fù)數(shù)的運(yùn)算法則、復(fù)數(shù)相等的定義,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了調(diào)查學(xué)生星期天晚上學(xué)習(xí)時(shí)間利用問(wèn)題,某校從高二年級(jí)100名學(xué)生(其中走讀生450名,住宿生550名)中,采用分層抽樣的方法抽取n名學(xué)生進(jìn)行問(wèn)卷調(diào)查,根據(jù)問(wèn)卷取得了這n名同學(xué)每天晚上學(xué)習(xí)時(shí)間(單位:分鐘)的數(shù)據(jù),按照以下區(qū)間分為八組
①[0,30),②[30,60)③[60,90)④[90,120)⑤[120,150)⑥[150,180)⑦[180,210)⑧[210,240),得到頻率布直方圖如圖,已知抽取的學(xué)生中星期天晚上學(xué)習(xí)時(shí)間少于60分鐘的人數(shù)為5人.
(1)求n的值并補(bǔ)全下列頻率分布直方圖;
(2)如果把“學(xué)生晚上學(xué)習(xí)時(shí)間達(dá)到兩小時(shí)”作為是否充分利用時(shí)間的標(biāo)準(zhǔn),對(duì)抽取的n名學(xué)生,完成下列2×2列聯(lián)表:
利用時(shí)間充分利用時(shí)間不充分合計(jì)
走讀生
 
 
 
住校生
 
10
 
合計(jì)
 
 
 
據(jù)此資料,你是否認(rèn)為學(xué)生“利用時(shí)間是否充分”與走讀、住校有關(guān)?
(3)若在第①組、第②組共抽出2人調(diào)查影響有效利用時(shí)間的原因,求抽出的2人中第①組第②組各有1人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的外接圓半徑為1,且A+C=2B,若角A,B,C所對(duì)的邊長(zhǎng)分別為a,b,c.
(1)求a2+c2的取值范圍;
(2)求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}滿足a2=3,an-1=17(n≥2),Sn=100,則n的值為( 。
A、10B、9C、8D、11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα=2cosα,求cos2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A(0,1),B(4,t),是否存在實(shí)數(shù)t,滿足A,B兩點(diǎn)作與x軸相切的圓有且只有一個(gè)?若存在滿足條件的圓,求出這個(gè)圓的方程;若不存在滿足條件的圓,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=|x-1+a|+|x-a|
(1)若a≥2,x∈R,證明:f(x)≥3;
(2)若f(1)<2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x
3x+1
,數(shù)列{an}滿足a1=1,an+1=f(an)(n∈N*).
(1)求證:數(shù)列{
1
an
}是等差數(shù)列;
(2)記Sn=a1a2+a2a3+…+anan+1,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=4x與雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)有相同的焦點(diǎn)F,點(diǎn)A,B是兩曲線的交點(diǎn),若(
OA
+
OB
)•
AF
=0,則雙曲線的離心率為( 。
A、
2
+2
B、
5
+1
C、
3
+1
D、
2
+1

查看答案和解析>>

同步練習(xí)冊(cè)答案