已知數(shù)列{an}的前n項(xiàng)和為Sn,3Sn=an-1(n∈N?).
(1)求a1,a2;
(2)求證:數(shù)列{an}是等比數(shù)列;
(3)求an和Sn.

(1)a1=-. a2(2)見解析(3)

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),等比數(shù)列的前n項(xiàng)和為,數(shù)列的前n項(xiàng)為,且前n項(xiàng)和滿足
(1)求數(shù)列的通項(xiàng)公式:
(2)若數(shù)列前n項(xiàng)和為,問使的最小正整數(shù)n是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在數(shù)列中,已知.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)C1、C2、…、Cn、…是坐標(biāo)平面上的一列圓,它們的圓心都在軸的正半軸上,且都與直線y=x相切,對(duì)每一個(gè)正整數(shù)n,圓Cn都與圓Cn+1相互外切,以rn表示Cn的半徑,已知{rn}為遞增數(shù)列.

(1)證明:{rn}為等比數(shù)列;
(2)設(shè)r1=1,求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{Sn}的前n項(xiàng)和為Tn,滿足Tn=2Sn-n2,n∈N*.
(1)求a1的值;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在數(shù)列中,,設(shè)
(1)證明:數(shù)列是等比數(shù)列;
(2)求數(shù)列的前項(xiàng)和;
(3)若,為數(shù)列的前項(xiàng)和,求不超過的最大的整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}的首項(xiàng)a1=2,Sn為其前n項(xiàng)和,若5S1,S3,3S2成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log2an,cn,記數(shù)列{cn}的前n項(xiàng)和Tn.若對(duì)?n∈N*,Tn≤k(n+4)恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列滿足, 且,其中.
(1) 求數(shù)列的通項(xiàng)公式;
(2) 設(shè)數(shù)列滿足,是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有的的值;若不存在,請(qǐng)說明理由。
(3) 令,記數(shù)列的前項(xiàng)和為,其中,證明:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),
(1)若是常數(shù),問當(dāng)滿足什么條件時(shí),函數(shù)有最大值,并求出取最大值時(shí)的值;
(2)是否存在實(shí)數(shù)對(duì)同時(shí)滿足條件:(甲)取最大值時(shí)的值與取最小值的值相同,(乙)?
(3)把滿足條件(甲)的實(shí)數(shù)對(duì)的集合記作A,設(shè),求使的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案