已知函數(shù)f(x)=(m為常數(shù)0<m<1),且數(shù)列{f()}是首項(xiàng)為2,公差為2的等差數(shù)列.
(1)f(),當(dāng)m=時(shí),求數(shù)列{}的前n項(xiàng)和
(2)設(shè)·,如果{}中的每一項(xiàng)恒小于它后面的項(xiàng),求m的取值范圍.

(1)
(2)

解析試題分析:解: 因數(shù)列是首項(xiàng)為2,公差為2的等差數(shù)列,所以
            2分        
當(dāng)時(shí)              3分


兩式相減
                        6分
由(1)知要使對(duì)于一切成立,即對(duì)一切成立
對(duì)一切成立            9分
只需,而單調(diào)遞增,時(shí)
  的取值范圍是  12分
考點(diǎn):數(shù)列的性質(zhì)
點(diǎn)評(píng):主要是考查了數(shù)列的求和以及數(shù)列的單調(diào)性的運(yùn)用,屬于中檔題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/07/6/cmsra.png" style="vertical-align:middle;" />的奇函數(shù)滿足,且當(dāng)時(shí),
(Ⅰ)求上的解析式;
(Ⅱ)當(dāng)取何值時(shí),方程上有解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1) 試判斷函數(shù)上單調(diào)性并證明你的結(jié)論;
(2) 若恒成立, 求整數(shù)的最大值;
(3) 求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)是冪函數(shù)且在上為減函數(shù),函數(shù)在區(qū)間上的最大值為2,試求實(shí)數(shù)的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)處有極大值7.
(Ⅰ)求的解析式;(Ⅱ)求=1處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f (x)=x3(1-a)x2-3ax+1,a>0.
(Ⅰ) 證明:對(duì)于正數(shù)a,存在正數(shù)p,使得當(dāng)x∈[0,p]時(shí),有-1≤f (x)≤1;
(Ⅱ) 設(shè)(Ⅰ)中的p的最大值為g(a),求g(a)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)判斷的奇偶性;
(2)確定函數(shù)上是增函數(shù)還是減函數(shù)?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)已知函數(shù)y=ln(-x2+x-a)的定義域?yàn)椋ǎ?,3),求實(shí)數(shù)a的取值范圍;
(2)已知函數(shù)y=ln(-x2+x-a)在(-2,3)上有意義,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,
(1)討論的單調(diào)區(qū)間;
(2)若對(duì)任意的,且,有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案