【題目】如圖,已知橢圓 的上、下頂點(diǎn)分別為A,B,點(diǎn)P在橢圓上,且異于點(diǎn)A,B,直線AP,BP與直線 分別交于點(diǎn)M,N,

1設(shè)直線AP,BP的斜率分別為 ,求證: 為定值;

2求線段MN的長的最小值;

3)當(dāng)點(diǎn)P運(yùn)動時,以MN為直徑的圓是否經(jīng)過某定點(diǎn)?請證明你的結(jié)論

【答案】;(;(.

【解析】試題分析:(隨點(diǎn)運(yùn)動而變化,故設(shè)點(diǎn)表示,進(jìn)而化簡整體消去變量;()點(diǎn)的位置由直線, 生成,所以可用兩直線方程解出交點(diǎn)坐標(biāo),求出,它必是的函數(shù),利用基本不等式求出最小值; ()利用的坐標(biāo)求出圓的方程,方程必含有參數(shù),消去一個后,利用等式恒成立方法求出圓所過定點(diǎn)坐標(biāo).

試題解析:(,令,則由題設(shè)可知

直線的斜率, 的斜率,又點(diǎn)在橢圓上,

所以,( ),從而有.

)由題設(shè)可以得到直線的方程為,

直線的方程為,

, 由,

直線 與直線的交點(diǎn),直線與直線的交點(diǎn).

,

等號當(dāng)且僅當(dāng)時取到,故線段長的最小值是.

)設(shè)點(diǎn)是以為直徑的圓上的任意一點(diǎn),則,故有

,又,所以以為直徑的圓的方程為

,令解得,

為直徑的圓是否經(jīng)過定點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國內(nèi)某知名連鎖店分店開張營業(yè)期間,在固定的時間段內(nèi)消費(fèi)達(dá)到一定標(biāo)準(zhǔn)的顧客可進(jìn)行一次抽獎活動,隨著抽獎活動的有效開展,參與抽獎活動的人數(shù)越來越多,該分店經(jīng)理對開業(yè)前天參加抽獎活動的人數(shù)進(jìn)行統(tǒng)計, 表示開業(yè)第天參加抽獎活動的人數(shù),得到統(tǒng)計表格如下:

經(jīng)過進(jìn)一步統(tǒng)計分析,發(fā)現(xiàn)具有線性相關(guān)關(guān)系.

(1)若從這天中隨機(jī)抽取兩天,求至少有天參加抽獎人數(shù)超過的概率;

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程,并估計若該活動持續(xù)天,共有多少名顧客參加抽獎.

參考公式: , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=2sin(﹣2x+ )的圖象向左平移 個單位后,得到的圖象對應(yīng)的解析式應(yīng)該是(
A.y=﹣2sin(2x)
B.y=﹣2sin(2x+
C.y=﹣2sin(2x﹣
D.y=﹣2sin(2x+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù), ).

(Ⅰ)若直線和函數(shù)的圖象相切,求的值;

(Ⅱ)當(dāng)時,若存在正實(shí)數(shù),使對任意,都有恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的參數(shù)方程是是參數(shù)),以坐標(biāo)原點(diǎn)為原點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)判斷直線與曲線的位置關(guān)系;

(2)過直線上的點(diǎn)作曲線的切線,求切線長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正四棱錐P﹣ABCD,B1為PB的中點(diǎn),D1為PD的中點(diǎn),則兩個棱錐A﹣B1CD1 , P﹣ABCD的體積之比是(

A.1:4
B.3:8
C.1:2
D.2:3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若,證明;

(2)若,求的取值范圍;并證明此時的極值存在且與無關(guān).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|< )的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式,并寫出f(x)的單調(diào)減區(qū)間;
(2)已知△ABC的內(nèi)角分別是A,B,C,A為銳角,且f( )= ,求cosA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=x2+ax+3.
(1)當(dāng)x∈R時,f(x)≥a恒成立,求a的取值范圍.
(2)當(dāng)x∈[﹣2,2]時,f(x)≥a恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案