【題目】已知:以點C(t, )(t∈R,t≠0)為圓心的圓與x軸交于點O,A,與y軸交于點O,B,其中O為原點.
(1)當t=2時,求圓C的方程;
(2)求證:△OAB的面積為定值;
(3)設直線y=﹣2x+4與圓C交于點M,N,若|OM|=|ON|,求圓C的方程.
【答案】
(1)解:當t=2時,圓心為C(2,1),
∴圓C的方程為(x﹣2)2+(y﹣1)2=5;
(2)證明:由題設知,圓C的方程為(x﹣t)2+(y﹣ )2=t2+ ,
化簡得x2﹣2tx+y2﹣ y=0.
當y=0時,x=0或2t,則A(2t,0);
當x=0時,y=0或 ,則B(0, ),
∴S△AOB= OAOB= |2t|| |=4為定值.
(3)解:∵OM=ON,則原點O在MN的中垂線上,設MN的中點為H,則CH⊥MN,
∴C、H、O三點共線,KMN=﹣2,則直線OC的斜率k= ,
∴t=2或t=﹣2.
∴圓心為C(2,1)或C(﹣2,﹣1),
∴圓C的方程為(x﹣2)2+(y﹣1)2=5或(x+2)2+(y+1)2=5.
由于當圓方程為(x+2)2+(y+1)2=5時,直線2x+y﹣4=0到圓心的距離d>r,
此時不滿足直線與圓相交,故舍去,
∴所求的圓C的方程為(x﹣2)2+(y﹣1)2=5.
【解析】(1)當t=2時,圓心為C(2,1),即可得出圓C的方程;(2)求出半徑,寫出圓的方程,再解出A、B的坐標,表示出面積即可;(3)設MN的中點為H,則CH⊥MN,根據(jù)C、H、O三點共線,KMN=﹣2,由直線OC的斜率k= ,求得t的值,可得所求的圓C的方程.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(ω>0,0<φ< )的部分圖象如圖所示.
(1)求f(x)的解析式;
(2)將函數(shù)y=f(x)的圖象上所有點的縱坐標不變,橫坐標縮短為原來的 倍,再將所得函數(shù)圖象向右平移 個單位,得到函數(shù)y=g(x)的圖象,求g(x)的單調遞增區(qū)間;
(3)當x∈[﹣ , ]時,求函數(shù)y=f(x+ )﹣ f(x+ )的最值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖(1)所示,已知四邊形是由直角△和直角梯形拼接而成的,其中
.且點為線段的中點, , 現(xiàn)將△沿進行翻折,使得二面角
的大小為,得到圖形如圖(2)所示,連接,點分別在線段上.
(1)證明: ;
(2)若三棱錐的體積為四棱錐體積的,求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知.
(Ⅰ)若在是單調遞增函數(shù),求實數(shù)的取值范圍;
(Ⅱ)令,若函數(shù)有兩個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在一個古典型(或幾何概型)中,若兩個不同隨機事件、概率相等,則稱和是“等概率事件”,如:隨機拋擲一枚骰子一次,事件“點數(shù)為奇數(shù)”和“點數(shù)為偶數(shù)”是“等概率事件”,關于“等概率事件”,以下判斷正確的是__________.
①在同一個古典概型中,所有的基本事件之間都是“等概率事件”;
②若一個古典概型的事件總數(shù)為大于2的質數(shù),則在這個古典概型中除基本事件外沒有其他“等概率事件”;③因為所有必然事件的概率都是1,所以任意兩個必然事件是“等概率事件”;
④隨機同時拋擲三枚硬幣一次,則事件“僅有一個正面”和“僅有兩個正面”是“等概率事件”.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),,其中,.
(Ⅰ)若函數(shù)在處有極小值,求,的值;
(Ⅱ)若,設,求證:當時,;
(Ⅲ)若,,對于給定,,,,,其中,,,若.求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的焦點在軸上,且橢圓的焦距為2.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)過點的直線與橢圓交于兩點,過作軸且與橢圓交于另一點, 為橢圓的右焦點,求證:三點在同一條直線上.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】完成下列進位制之間的轉化.
(1)10231(4)=________(10);
(2)235(7)=________(10);
(3)137(10)=________(6);
(4)1231(5)=________(7);
(5)213(4)=________(3);
(6)1010111(2)=________(4).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com