計(jì)算
(1)80.25×4
2
+2 log
2
3
+log (2+
3
)
3
-2)2
(2)已知a+a-1=3,求
a2+a-2-2
a3+a-3-3
的值.
考點(diǎn):對(duì)數(shù)的運(yùn)算性質(zhì),有理數(shù)指數(shù)冪的化簡(jiǎn)求值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)利用對(duì)數(shù)和指數(shù)的運(yùn)算法則和運(yùn)算性質(zhì)求解.
(2)利用指數(shù)的運(yùn)算法則求解.
解答: 解:(1)80.25×4
2
+2 log
2
3
+log (2+
3
)
3
-2)2
=2
3
4
2
1
4
+2log29+log(2+
3
)
(2+
3
)-2

=2+9-2
=9.(6分)
(2)∵a+a-1=3,
a2+a-2-2
a3+a-3-3

=
(a+a-1)2-4
(a+a-1)[(a+a-1)2-3]-3

=
9-4
3(9-3)-3

=
1
3
.(12分)
點(diǎn)評(píng):本題考查指數(shù)式和對(duì)數(shù)式的運(yùn)算,是基礎(chǔ)題,解題時(shí)要注意運(yùn)算性質(zhì)和運(yùn)算法則的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P(-1,-1),Q(2,26)是曲線y=4x2+5x上的兩點(diǎn),求與直線PQ平行的曲線y=4x2+5x上切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和為Sn,且2an+1、Sn、-a2成等差數(shù)列,其中(n∈N*).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)數(shù)列{bn}滿足:bn=
an
(an+1-18)(an+2-18)
,記數(shù)列{bn}的前n項(xiàng)和為Tn,求Tn及數(shù)列{Tn}的最大項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,三棱柱ABC-A1B1C1的側(cè)棱AA1⊥底面ABC,∠ACB=90°,E是棱CC1的中點(diǎn),F(xiàn)是AB的中點(diǎn),AC=BC=1,AA1=2.
(1)求證:CF∥平面AB1E;
(2)求三棱錐C-AB1E的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和Sn=-
n2
2
+
k
2
n,且S14=S11,n∈N*
(Ⅰ)求k的值及數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{|an|}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log2(x2-x),g(x)=log2(ax-a).
(Ⅰ)求f(x)的定義域;
(Ⅱ)若g(x)的定義域?yàn)椋?,+∞),求當(dāng)f(x)>g(x)時(shí)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知cos2α=-
4
5
,0<α<
π
2

(1)求tanα的值;
(2)求tan4α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正三棱柱ABC-A1B1C1底面邊長(zhǎng)為2,AA1=4
2
,AC1=2AF,AD⊥B1D,AE=
1
2
B1E.
(1)證明:DF∥平面ABB1A1
(2)求三棱錐A-DEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列四個(gè)命題中,真命題的序號(hào)有
 
.(寫(xiě)出所有真命題的序號(hào))
①若a,b,c∈R,則“ac2>bc2”是“a>b”成立的充分不必要條件;
②命題“?x∈R使得x2+x+1<0”的否定是“?x∈R均有x2+x+1≥0”;
③命題“若|x|≥2,則x≥2或x≤-2”的否命題是“若|x|<2,則-2<x<2”;
④函數(shù)f(x)=lnx+x-
3
2
在區(qū)間(1,2)上有且僅有一個(gè)零點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案