定義:如果數(shù)列的任意連續(xù)三項(xiàng)均能構(gòu)成一個(gè)三角形的三邊長(zhǎng),則稱為“三角形”數(shù)列.對(duì)于“三角形”數(shù)列,如果函數(shù)使得仍為一個(gè)“三角形”數(shù)列,則稱是數(shù)列的“保三角形函數(shù)”,.
(Ⅰ)已知是首項(xiàng)為2,公差為1的等差數(shù)列,若是數(shù)列的“保三角形函數(shù)”,求k的取值范圍;
(Ⅱ)已知數(shù)列的首項(xiàng)為2010,是數(shù)列的前n項(xiàng)和,且滿足,證明是“三角形”數(shù)列;
(Ⅲ)根據(jù)“保三角形函數(shù)”的定義,對(duì)函數(shù),,和數(shù)列1,,,()提出一個(gè)正確的命題,并說(shuō)明理由.
(Ⅰ),(Ⅱ)先求出數(shù)列的通項(xiàng)公式,然后根據(jù)“三角形”數(shù)列的定義證明即可,(3)函數(shù),是數(shù)列1,1+d,1+2d 的“保三角形函數(shù)”,必須滿足三個(gè)條件:①1,1+d,1+2d是三角形數(shù)列,所以,即.②數(shù)列中的各項(xiàng)必須在定義域內(nèi),即.
③是三角形數(shù)列.由于,是單調(diào)遞減函數(shù),所以,解得.
解析試題分析:(1)顯然,對(duì)任意正整數(shù)都成立,
即是三角形數(shù)列. 2分
因?yàn)閗>1,顯然有,由得,解得.
所以當(dāng)時(shí),是數(shù)列的“保三角形函數(shù)”. 5分
(2)由得,兩式相減得
所以,,
經(jīng)檢驗(yàn),此通項(xiàng)公式滿足 7分
顯然,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d3/a/ph2le2.png" style="vertical-align:middle;" />,
所以 是“三角形”數(shù)列. 10分
(3)探究過(guò)程: 函數(shù),是數(shù)列1,1+d,1+2d 的“保三角形函數(shù)”,必須滿足三個(gè)條件:
①1,1+d,1+2d是三角形數(shù)列,所以,即.
②數(shù)列中的各項(xiàng)必須在定義域內(nèi),即.
③是三角形數(shù)列.
由于,是單調(diào)遞減函數(shù),所以,解得.
考點(diǎn):本題考查了數(shù)列的運(yùn)用
點(diǎn)評(píng):本題是在新定義下對(duì)數(shù)列的綜合考查.關(guān)于新定義的題型,在作題過(guò)程中一定要理解定義,并會(huì)用定義來(lái)解題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某企業(yè)為擴(kuò)大生產(chǎn)規(guī)模,今年年初新購(gòu)置了一條高性能的生產(chǎn)線,該生產(chǎn)線在使用過(guò)程中的設(shè)備維修、燃料和動(dòng)力等消耗的費(fèi)用(稱為設(shè)備的低劣化值)會(huì)逐年增加,第一年設(shè)備低劣化值是4萬(wàn)元,從第二年到第七年,每年設(shè)備低劣化值均比上年增加2萬(wàn)元,從第八年開(kāi)始,每年設(shè)備低劣化值比上年增加25%.
(1)設(shè)第年該生產(chǎn)線設(shè)備低劣化值為,求的表達(dá)式;
(2)若該生產(chǎn)線前年設(shè)備低劣化平均值為,當(dāng)達(dá)到或超過(guò)12萬(wàn)元時(shí),則當(dāng)年需要更新生產(chǎn)線,試判斷第幾年需要更新該生產(chǎn)線,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
數(shù)列滿足,且.
(1) 求數(shù)列的通項(xiàng)公式;
(2) 令,當(dāng)數(shù)列為遞增數(shù)列時(shí),求正實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列滿足,且,
(1)當(dāng)時(shí),求出數(shù)列的所有項(xiàng);
(2)當(dāng)時(shí),設(shè),證明:;
(3)設(shè)(2)中的數(shù)列的前項(xiàng)和為,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等差數(shù)列{an}的公差不為零,a1=25,且,,成等比數(shù)列.
(Ⅰ)求的通項(xiàng)公式;
(Ⅱ)求+a4+a7+…+a3n-2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
等差數(shù)列的公差為,且成等比數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等差數(shù)列的首項(xiàng),公差,且第2項(xiàng)、第5項(xiàng)、第14項(xiàng)分別是等比數(shù)列的第2項(xiàng)、第3項(xiàng)、第4項(xiàng).
(1)求數(shù)列、的通項(xiàng)公式;
(2)設(shè)數(shù)列對(duì)任意的,均有成立,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列是等比數(shù)列,,公比是的展開(kāi)式中的第二項(xiàng)(按x的降冪排列).
(1)用表示通項(xiàng)與前n項(xiàng)和;
(2)若,用表示.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com