直線y=-
3
x+1的傾斜角的大小是( 。
A、135°B、120°
C、60°D、30°
考點(diǎn):直線的傾斜角
專題:直線與圓
分析:設(shè)直線y=-
3
x+1的傾斜角為θ(θ∈[0°,180°)),可得tanθ=-
3
,解出即可.
解答: 解:設(shè)直線y=-
3
x+1的傾斜角為θ(θ∈[0°,180°)),
tanθ=-
3
,
∴θ=120°.
故選:B.
點(diǎn)評:本題考查了直線的斜率與傾斜角的關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
3
sin2x+cos2x的最大值
 
,最小正周期
 
,在[0,
π
6
]上的值域
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一條長為8的鐵絲截成兩段,分別彎成兩個正方形,要使兩個正方形的面積和最小,則兩個正方形的邊長各是
 
,
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+bx+c(其中b>2),且y=f(sinx)的最大值為5,最小值為-1.若f(x)≥-m2+2km+1對x∈[0,c],k∈[-1,1]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(-3,-1)和B(4,-6)在直線l:3x-2y-a=0的兩側(cè),則a的取值范圍是( 。
A、(-24,7)
B、(-7,24)
C、(-∞,-7)∪(24,+∞)
D、(-∞,-24)∪(7,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2014年2月,西非開始爆發(fā)埃博拉病毒疫情,埃博拉病毒是引起人類和靈長類動物發(fā)生埃博拉出血熱的烈性病毒,引發(fā)了世界恐慌.中國國際救援組織立即采用分層抽樣的方法從病毒專家、心理專家、地質(zhì)專家三類專家中抽取若干人組成研究團(tuán)隊(duì)赴西非工作,有關(guān)數(shù)據(jù)見表1(單位:人).
病毒專家為了檢測當(dāng)?shù)厝罕姲l(fā)燒與是否更易受博拉病毒疫情影響,在當(dāng)?shù)仉S機(jī)選取了110群眾進(jìn)行了檢測,并將有關(guān)數(shù)據(jù)整理為不完整的2×2列聯(lián)表(表2).
表1:
相關(guān)人員數(shù)抽取人數(shù)
病毒專家48x
心理專家24y
地質(zhì)專家726
表2:
發(fā)燒無發(fā)燒合計
患Ebola50A60
不患EbolaB4050
合計CDE
(1)求x,y;
(2)寫出表2中A、B、C、D、E的值,并判斷是否有99.9%的把握認(rèn)為疫情地區(qū)的群眾發(fā)燒與患Ebola病毒有關(guān);
(3)若從研究團(tuán)隊(duì)的病毒專家和心理專家中隨機(jī)選2人撰寫研究報告,求其中恰好有1人為病毒專家的概率.K2臨界值表:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足:對任意α,β∈R,總有f(α+β)-[f(α)+f(β)]=2015,則下列說法正確的是( 。
A、f(x)+1是奇函數(shù)
B、f(x)-1是奇函數(shù)
C、f(x)+2015是奇函數(shù)
D、f(x)-2015是奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

所有能使tanα=tan3成立的α組合集合A,請你寫出一個集合B,使B⊆A,且B的元素有無限個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

摩天輪中的數(shù)學(xué)問題.如圖,游樂場中的摩天輪勻速旋轉(zhuǎn),其中心O距地面40.5m,半徑40m,若從最低點(diǎn)處登上摩天輪,那么你與地面的距離將隨著時間的變化,5min后達(dá)到最高點(diǎn),你登上摩天輪的時刻開始計時.請求出你與地面的距離y與時間t的函數(shù)解析式.

查看答案和解析>>

同步練習(xí)冊答案