已知圓C的圓心是直線x-y-1=0與x軸的交點,且圓C與直線3x-4y+2=0相切,則圓C的方程為
 
分析:先求出圓心,根據(jù)圓心到直線的距離等于半徑,求得圓的半徑 從而得到圓的方程.
解答:解:由圓心是直線x-y-1=0與x軸的交點知,圓心為C(1,0),又圓C與直線3x-4y+2=0相切,
則圓心C到直線3x-4y+2=0的距離等于半徑,即
|3-0+2|
9+16
=1,故圓的標(biāo)準(zhǔn)方程為 (x-1)2+y2=1,
故答案為:(x-1)2+y2=1.
點評:本題考查直線和圓的位置關(guān)系,點到直線的距離公式的應(yīng)用.求圓的半徑是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的圓心是直線x-y+1=0與x軸的交點,且圓C與直線x+y+3=0相切.則圓C的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的圓心是直線
x=t
y=t-1
(t為參數(shù))
與x軸的交點,且圓C與直線3x-4y+2=0相切,則圓C的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的圓心是直線 x-y+1=0與x軸的交點,且圓C與直線3x+4y+13=0 相切,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(考生注意:請在二題中任選一題作答,如果多做,則按所做的第一題評分)
(1)(幾何證明選做題)如圖,已知RT△ABC的兩條直角邊AC,BC的長分別為3cm,4cm,以AC為直徑的圓與AB交于點D,則
BD
DA
=
16
9
16
9

(2)(坐標(biāo)系與參數(shù)方程選做題)已知圓C的圓心是直線
x=t
y=1+t
(t為參數(shù))與x軸的交點,且圓C與直線x+y+3=0相切.則圓C的方程為
(x+1)2+y2=2
(x+1)2+y2=2

查看答案和解析>>

同步練習(xí)冊答案