【題目】如圖,P(x0 , y0)是橢圓 +y2=1的上的點(diǎn),l是橢圓在點(diǎn)P處的切線,O是坐標(biāo)原點(diǎn),OQ∥l與橢圓的一個(gè)交點(diǎn)是Q,P,Q都在x軸上方

(1)當(dāng)P點(diǎn)坐標(biāo)為( )時(shí),利用題后定理寫出l的方程,并驗(yàn)證l確定是橢圓的切線;
(2)當(dāng)點(diǎn)P在第一象限運(yùn)動(dòng)時(shí)(可以直接應(yīng)用定理)
①求△OPQ的面積
②求直線PQ在y軸上的截距的取值范圍.
定理:若點(diǎn)(x0 , y0)在橢圓 +y2=1上,則橢圓在該點(diǎn)處的切線方程為 +y0y=1.

【答案】
(1)解:由點(diǎn)(x0,y0)在橢圓 +y2=1上,則橢圓在該點(diǎn)處的切線方程為 +y0y=1.

若P( ),則 ,整理得:直線l:x+y=2,

,整理得:4x2﹣12x+9=0,

△=(12)2﹣4×4×9=0,

∴直線l:x+y=2是橢圓的切線


(2)解:①設(shè)P(x0,y0),則x02+3y02=1,且切線l: +y0y=1.

則OQ:x0x+3y0y=0, ,解得: ,

由Q在x軸上方,則Q(﹣ y0, x0),

則丨OQ丨= = ,

由l與直線OQ之間的距離d= ,

由△OPQ的面積S= ×丨OQ丨×d=

②設(shè)直線PQ交y軸點(diǎn)M(0,m),由P(x0,y0),Q(﹣ y0, x0),x0x+3y0y=0,

由kPQ=kPM,則 = ,

則m=y0 =

3=x02+3y02<(x0+ y02≤2(x02+3y02)=6,

故m= ∈[ ,1)


【解析】(1)由定理求得切線方程,代入橢圓方程,由△=0,則直線l:x+y=2是在P點(diǎn)的橢圓的切線;(2)①由定理求得P點(diǎn)的切線方程,即可求得OQ的方程,代入橢圓方程,即可求得Q點(diǎn)坐標(biāo),即可求得丨OQ丨,則l與直線OQ之間的距離d,即可求得△OPQ的面積;②由kPQ=kPM,即可求得m,由3=x02+3y02<(x0+ y02≤2(x02+3y02)=6,即可求得m的取值范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將三顆骰子各擲一次,記事件A=“三個(gè)點(diǎn)數(shù)都不同”,B=“至少出現(xiàn)一個(gè)6點(diǎn)”,則條件概率P(A|B),P(B|A)分別是(
A. ,
B.
C. ,
D. ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A,B分別為橢圓C: + =1(a>b>0)在x軸正半軸,y軸正半軸上的頂點(diǎn),原點(diǎn)O到直線AB的距離為 ,且|AB|=
(1)求橢圓C的離心率;
(2)直線l:y=kx+m(﹣1≤k≤2)與圓x2+y2=2相切,并與橢圓C交于M,N兩點(diǎn),求|MN|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和是Sn , 則下列四個(gè)命題中,錯(cuò)誤的是(
A.若數(shù)列{an}是公差為d的等差數(shù)列,則數(shù)列{ }的公差為 的等差數(shù)列
B.若數(shù)列{ }是公差為d的等差數(shù)列,則數(shù)列{an}是公差為2d的等差數(shù)列
C.若數(shù)列{an}是等差數(shù)列,則數(shù)列的奇數(shù)項(xiàng),偶數(shù)項(xiàng)分別構(gòu)成等差數(shù)列
D.若數(shù)列{an}的奇數(shù)項(xiàng),偶數(shù)項(xiàng)分別構(gòu)成公差相等的等差數(shù)列,則{an}是等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC的面積為8,cosA= ,D為BC上一點(diǎn), = + ,過(guò)點(diǎn)D做AB,AC的垂線,垂足分別為E,F(xiàn),則 =

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知不等式ln(x+1)﹣1≤ax+b對(duì)一切x>﹣1都成立,則 的最小值是(
A.e﹣1
B.e
C.1﹣e3
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿足an= ,若從{an}中提取一個(gè)公比為q的等比數(shù)列{a },其中k1=1且k1<k2<…<kn , kn∈N*,則滿足條件的最小q的值為(
A.
B.
C.
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】4月23日是世界讀書日,為提高學(xué)生對(duì)讀書的重視,讓更多的人暢游于書海中,從而收獲更多的知識(shí),某高中的校學(xué)生會(huì)開展了主題為“讓閱讀成為習(xí)慣,讓思考伴隨人生”的實(shí)踐活動(dòng),校學(xué)生會(huì)實(shí)踐部的同學(xué)隨即抽查了學(xué)校的40名高一學(xué)生,通過(guò)調(diào)查它們是喜愛(ài)讀紙質(zhì)書還是喜愛(ài)讀電子書,來(lái)了解在校高一學(xué)生的讀書習(xí)慣,得到如表列聯(lián)表:

喜歡讀紙質(zhì)書

不喜歡讀紙質(zhì)書

合計(jì)

16

4

20

8

12

20

合計(jì)

24

16

40

(Ⅰ)根據(jù)如表,能否有99%的把握認(rèn)為是否喜歡讀紙質(zhì)書籍與性別有關(guān)系?
(Ⅱ)從被抽查的16名不喜歡讀紙質(zhì)書籍的學(xué)生中隨機(jī)抽取2名學(xué)生,求抽到男生人數(shù)ξ的分布列及其數(shù)學(xué)期望E(ξ).
參考公式:K2= ,其中n=a+b+c+d.
下列的臨界值表供參考:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】公元263年左右,我國(guó)數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無(wú)限增加時(shí),多邊形的面積可無(wú)限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”.利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,其中n表示圓內(nèi)接正多邊形的邊數(shù),執(zhí)行此算法輸出的圓周率的近似值依次為(參考數(shù)據(jù): ≈1.732,sin15°≈0.2588,sin75°≈0.1305)(
A.2.598,3,3.1048
B.2.598,3,3.1056
C.2.578,3,3.1069
D.2.588,3,3.1108

查看答案和解析>>

同步練習(xí)冊(cè)答案