若{an}為等差數(shù)列,且a2+a5+a8=39,則a1+a2+…+a9的值為(  )
分析:由等差數(shù)列的性質可得,a2+a5+a8=3a5,從而可求a5,而a1+a2+…+a9=9a5,代入可求
解答:解:由等差數(shù)列的性質可得,a2+a5+a8=3a5=39
∴a5=13
∴a1+a2+…+a9=9a5=9×13=117
故選A
點評:本題主要考查了等差數(shù)列的性質(若m+n=p+q,則am+an=ap+aq)的應用,屬于基礎試題
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

10、若{an}為等差數(shù)列,且a2+a3+a10+a11=48,則a6+a7等于
24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

11、若{an}為等差數(shù)列,a2,a11是方程x2-3x-5=0的兩根,則a5+a8=
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等差數(shù)列與等比數(shù)列之間是存在某種結構的類比關系的,例如從定義看,或者從通項公式看,都可以發(fā)現(xiàn)這種類比的原則.按照此思想,請把下面等差數(shù)列的性質,類比到等比數(shù)列,寫出相應的性質:若{an}為等差數(shù)列,am=a,an=b(m<n),則公差d=
b-a
n-m
;若{bn}是各項均為正數(shù)的等比數(shù)列,bm=a,bn=b(m<n),則公比q=
n-m
b
a
n-m
b
a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且a1+a5=17.
(1)若{an}為等差數(shù)列,且S8=56.
①求該等差數(shù)列的公差d;
②設數(shù)列{bn}滿足bn=3n•an,則當n為何值時,bn最大?請說明理由;
(2)若{an}還同時滿足:①{an}為等比數(shù)列;②a2a4=16;③對任意的正整數(shù)k,存在自然數(shù)m,使得Sk+2、Sk、Sm依次成等差數(shù)列,試求數(shù)列{an}的通項公式.

查看答案和解析>>

同步練習冊答案