已知的三內(nèi)角、、所對(duì)的邊分別是,,,向量
,且。
(1)求角的大。
(2)若,求的范圍。
(1)(2)
解析試題分析:(1)由兩向量的坐標(biāo),及兩向量垂直,利用平面向量的數(shù)量積運(yùn)算法則列出關(guān)系式,利用正弦定理化簡(jiǎn),整理后利用兩角和與差的正弦函數(shù)公式及誘導(dǎo)公式化簡(jiǎn),求出的值,即可確定出B的度數(shù);
(2)由b及的值,利用余弦定理列出關(guān)系式,再利用基本不等式求出的最大值,最后利用三角形兩邊之和大于第三邊求出的范圍即可.
(1),,且,,
利用正弦定理化簡(jiǎn)得:,整理得,即
又
(2),所以由余弦定理,即,當(dāng)且僅當(dāng)時(shí)取等號(hào),即,又
考點(diǎn):正弦、余弦定理,基本不等式的運(yùn)用
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,測(cè)量河對(duì)岸的塔高AB時(shí),可以選與塔底B在同一水平面內(nèi)的兩個(gè)測(cè)點(diǎn)C與D.測(cè)得,并在點(diǎn)C測(cè)得塔頂A的仰角為,求塔高AB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
的內(nèi)角所對(duì)的邊分別為.
(1)若成等差數(shù)列,證明:;
(2)若成等比數(shù)列,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知、、分別為的三邊、、所對(duì)的角,向量,,且.
(1)求角的大小;
(2)若,,成等差數(shù)列,且,求邊的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,向量m=(2sinB,2-cos2B),n=(2sin2(+),-1),且m⊥n.
(1)求角B的大。
(2)求sinA+cosC的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
己知A、B、C分別為△ABC的三邊a、b、c所對(duì)的角,向量
,且.
(1)求角C的大。
(2)若sinA,sinC,sinB成等差數(shù)列,且,求邊c的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在△中,是角對(duì)應(yīng)的邊,向量,,且.
(1)求角;
(2)函數(shù)的相鄰兩個(gè)極值的橫坐標(biāo)分別為、,求的單調(diào)遞減區(qū)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com