(2012•廣州一模)如圖,在四面體PABC中,PA=PB,CA=CB,D、E、F、G分別是PA、AC、CB、BP的中點(diǎn).
(1)求證:D、E、F、G四點(diǎn)共面;
(2)求證:PC⊥AB;
(3)若△ABC和△PAB都是等腰直角三角形,且AB=2,PC=
2
,求四面體PABC的體積.
分析:(1)先利用三角形中位線定理和平行公理證明DG∥EF,從而利用平面的性質(zhì)公理證明四點(diǎn)共面;
(2)取AB中點(diǎn)為O,先利用線面垂直的判定定理證明AB⊥面POC,再利用線面垂直的定義證明結(jié)論即可;
(3)先利用線面垂直的判定定理證明PO⊥面ABC,再利用棱錐體積計(jì)算公式計(jì)算體積即可
解答:解:(1)依題意DG∥AB,EF∥AB,
∴DG∥EF,
∴DG、EF共面,從而D、E、F、G四點(diǎn)共面.
(2)取AB中點(diǎn)為O,連接PO、CO
∵PA=PB,CA=CB,∴PO⊥AB,CO⊥AB,
∵PO∩CO=O,∴AB⊥面POC
∵PC?面POC,∴AB⊥PC
(3)因?yàn)椤鰽BC和PAB是等腰直角三角形,所以PO=CO=
1
2
AB=1

PC=
2
,OP2+OC2=PC2,∴OP⊥OC,
又PO⊥AB,且AB∩OC=O,
∴PO⊥面ABC
VP-ABC=
1
3
×PO×S△ABC=
1
3
×1×2×1×
1
2
=
1
3
點(diǎn)評(píng):本題主要考查了三棱錐中的線面關(guān)系和計(jì)算,線面垂直的判定和定義,平面的基本性質(zhì)及其公理,三棱錐體積計(jì)算公式等知識(shí)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•廣州一模)如圖所示的莖葉圖記錄了甲、乙兩個(gè)小組(每小組4人)在期末考試中的數(shù)學(xué)成績(jī).乙組記錄中有一個(gè)數(shù)據(jù)模糊,無(wú)法確認(rèn),在圖中以a表示.已知甲、乙兩個(gè)小組的數(shù)學(xué)成績(jī)的平均分相同.
(1)求a的值;
(2)求乙組四名同學(xué)數(shù)學(xué)成績(jī)的方差;
(3)分別從甲、乙兩組同學(xué)中各隨機(jī)選取一名同學(xué),記這兩名同學(xué)數(shù)學(xué)成績(jī)之差的絕對(duì)值為X,求隨機(jī)變量X的分布列和均值(數(shù)學(xué)期望).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•廣州一模)已知函數(shù)f(x)=-x3+ax2+b(a,b∈R).
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若對(duì)任意a∈[3,4],函數(shù)f(x)在R上都有三個(gè)零點(diǎn),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•廣州一模)設(shè)函數(shù)f(x)=ex(e為自然對(duì)數(shù)的底數(shù)),gn(x)=1+x+
x2
2!
+
x3
3!
+…+
xn
n!
(n∈N*).
(1)證明:f(x)≥g1(x);
(2)當(dāng)x>0時(shí),比較f(x)與gn(x)的大小,并說(shuō)明理由;
(3)證明:1+(
2
2
)1+(
2
3
)2+(
2
4
)3+…+(
2
n+1
)ngn(1)<e
(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•廣州一模)已知
e1
=(
3
,-1)
e2
=(
1
2
,
3
2
)
,若
a
=
e1
+(t2-3)•
e2
,
b
=-k•
e1
+t•
e2
,若
a
b
,則實(shí)數(shù)k和t滿足的一個(gè)關(guān)系式是
t3-3t-4k=0
t3-3t-4k=0
,
k+t2
t
的最小值為
-
7
4
-
7
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•廣州一模)已知平面向量
a
=(1,3)
,
b
=(-3,x)
,且
a
b
,則
a
b
=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案