定義域為R的函數(shù)f(x)滿足f(x+2)=2f(x),當x∈[0,2]時,f(x)=
x2-x
1
10
(x-2)
x∈[0,1)
x∈[1,2]
,若x∈[4,6]時,f(x)≥t2-2t-4恒成立,則實數(shù)t的取值范圍是
 
考點:函數(shù)恒成立問題
專題:綜合題,函數(shù)的性質及應用
分析:先確定當x∈[0,2]時,f(x)的最小值為-
1
4
,利用函數(shù)f(x)滿足f(x+2)=2f(x),可得x∈[4,6]時,f(x)的最小值為-1,從而可得-1≥t2-2t-4,即可得出結論.
解答: 解:當x∈[0,1)時,f(x)=x2-x∈[-
1
4
,0]
當x∈[1,2]時,f(x)=
1
10
(x-2)x∈[-
1
10
,0]
∴當x∈[0,2]時,f(x)的最小值為-
1
4
,
又∵函數(shù)f(x)滿足f(x+2)=2f(x),
當x∈[2,4]時,f(x)的最小值為-
1
2
,
當x∈[4,6]時,f(x)的最小值為-1,
∵x∈[4,6]時,f(x)≥t2-2t-4恒成立,
∴-1≥t2-2t-4
∴(t+1)(t-3)≤0,
解得:-1≤t≤3,
故答案為:-1≤t≤3.
點評:本題考查的知識點是函數(shù)恒成立問題,考查函數(shù)的最值,是函數(shù)、不等式的綜合應用,確定-1≥t2-2t-4是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

求下列函數(shù)的值域:
(1)y=
2x-1
x2+2x+2
; 
(2)y=
x-2
x2-3x+2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=sin(2x+
π
3
)的圖象向右平移
π
12
個單位后,再縱坐標不變,橫坐標變?yōu)樵瓉淼?倍,所得圖象的函數(shù)解析式為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,AB為圓O的直徑,AB=2,過圓O上一點M作圓O的切線,交AB的延長線于點C,過點M作MD⊥AB于點D,若D是OB中點.則AC•BC=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=sinx在區(qū)間[-
π
6
,
6
]上的值域為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合P={t|數(shù)列an=n2+tn(n∈N*)單調遞增},集合Q={t|函數(shù)f(x)=kx2+tx在區(qū)間[1,+∞)上單調遞增},若“t∈P”是“t∈Q”的充分不必要條件,則實數(shù)k的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知tanx=-
3
4
,則tan2x=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

sin5°cos25°+cos5°sin25°=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,點A,B是圓O上的兩點,∠AOB=120°,點D是圓周上異于A,B的任意一點,線段OD與線段AB交于點C.若
OC
=m
OA
+n
OB
,則m+n=
 
;若
OD
OA
OB
,則μ+λ的取值范圍是
 

查看答案和解析>>

同步練習冊答案