已知函數(shù)f(x)=m•2x+t的圖象經(jīng)過點A(1,1)、B(2,3)及C(n,Sn),Sn為數(shù)列{an}的前n項和,n∈N*
(1)求Sn及an
(2)若數(shù)列{cn}滿足cn=6nan-n,求數(shù)列{cn}的前n項和Tn
【答案】分析:(1)將點A(1,1)、B(2,3)代入函數(shù)解析式,得到關(guān)于m,t的方程解出參數(shù)的值,求得函數(shù)的解析式,再將點C(n,Sn),得到Sn=2n-1(n∈N*).再有n≥2時,an=Sn-Sn-1求an;
(2)由題意cn=6nan-n,求得數(shù)列{cn}的通項公式,由其形式得到,需要先分組,再對其中的一組用錯位相減法求和.另一組用公式求和.兩者相加求得數(shù)列{cn}的前n項和Tn
解答:解:(1)由,得,
∴f(x)=2x-1,∴Sn=2n-1(n∈N*).
∴當n≥2時,an=Sn-Sn-1=2n-2n-1=2n-1
當n=1時,S1=a1=1符合上式.
∴an=2n-1(n∈N*).
(2)由(1)知cn=6nan-n=3n×2n-n.
從而Tn=3(1×2+2×22+…+n×2n)-(1+2+…+n)
令M=1×2+2×22+…+n×2n
則2M=1×22+2×23+…+(n-1)×2n+n×2n+1
作差整理得M=(n-1)•2n+1
所以Tn=3(n-1)•2n+1-+6.
點評:本題考查數(shù)列與函數(shù)的綜合,正確解答本題,關(guān)鍵是根據(jù)函數(shù)的由題意求出函數(shù)的解析式,以及觀察數(shù)列{cn}的通項公式的形式,用分組技巧與錯位相減法的技巧求和,本題綜合性強,對觀察能力,轉(zhuǎn)化能力要求較高,是一個能力型題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=m•2x+t的圖象經(jīng)過點A(1,1)、B(2,3)及C(n,Sn),Sn為數(shù)列{an}的前n項和,n∈N*
(1)求Sn及an;
(2)若數(shù)列{cn}滿足cn=6nan-n,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�