【題目】中石化集團(tuán)獲得了某地深海油田區(qū)塊的開采權(quán),集團(tuán)在該地區(qū)隨機(jī)初步勘探了部分兒口井,取得了地質(zhì)資料.進(jìn)入全面勘探時期后,集團(tuán)按網(wǎng)絡(luò)點(diǎn)來布置井位進(jìn)行全面勘探. 由于勘探一口井的費(fèi)用很高,如果新設(shè)計的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費(fèi)用.勘探初期數(shù)據(jù)資料見如表:
(Ⅰ)1~6號舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為,求,并估計的預(yù)報值;
(Ⅱ)現(xiàn)準(zhǔn)備勘探新井,若通過1、3、5、7號井計算出的的值(精確到0.01)相比于(Ⅰ)中的值之差不超過10%,則使用位置最接近的已有舊井,否則在新位置打開,請判斷可否使用舊井?
(參考公式和計算結(jié)果:)
(Ⅲ)設(shè)出油量與勘探深度的比值不低于20的勘探并稱為優(yōu)質(zhì)井,那么在原有井號1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是優(yōu)質(zhì)井的概率.
【答案】(1),;(3);(3).
【解析】
試題(1)因?yàn)榛貧w直線必過樣本中心點(diǎn),求得;(2)利用公式求得,再和現(xiàn)有數(shù)據(jù)進(jìn)行比較;(3)是古典概型,由題意列出從這口井中隨機(jī)選取口井的可能情況,求出概率.
試題解析:因?yàn)?/span>,,回歸只需必過樣本中心點(diǎn),則
,
故回歸只需方程為,
當(dāng)時,,即的預(yù)報值為.………………4分
因?yàn)?/span>,,所以
.
,
即,.
,,均不超過,因此使用位置最接近的已有舊井;………………8分
易知原有的出油量不低于的井中,這口井是優(yōu)質(zhì)井,這口井為非優(yōu)質(zhì)井,由題意從這口井中隨機(jī)選取口井的可能情況有:,,,共種,其中恰有口是優(yōu)質(zhì)井的有中,所以所求概率是.………………12分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且.
(1)若函數(shù)在上恒有意義,求的取值范圍;
(2)是否存在實(shí)數(shù),使函數(shù)在區(qū)間上為增函數(shù),且最大值為?若存在求出的值,若不存在請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某公園有三條觀光大道圍成直角三角形,其中直角邊,斜邊.現(xiàn)有甲、乙、丙三位小朋友分別在大道上嬉戲,所在位置分別記為點(diǎn).
(1)若甲乙都以每分鐘的速度從點(diǎn)出發(fā)在各自的大道上奔走,到大道的另一端
時即停,乙比甲遲2分鐘出發(fā),當(dāng)乙出發(fā)1分鐘后,求此時甲乙兩人之間的距離;
(2)設(shè),乙丙之間的距離是甲乙之間距離的2倍,且,請將甲
乙之間的距離表示為θ的函數(shù),并求甲乙之間的最小距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】是指大氣中空氣動力學(xué)當(dāng)量直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物.我國標(biāo)準(zhǔn)采用世界衛(wèi)生組織設(shè)定的最寬限值,即日均值在35微克/立方米以下空氣質(zhì)量為一級;在35微克/立方米~75微克/立方米之間空氣質(zhì)量為二級;在75微克/立方米以上空氣質(zhì)量為超標(biāo).某城市環(huán)保局從該市市區(qū)2017年上半年每天的監(jiān)測數(shù)據(jù)中隨機(jī)抽取18天的數(shù)據(jù)作為樣本,將監(jiān)測值繪制成莖葉圖如下圖所示(十位為莖,個位為葉).
(1)求這18個數(shù)據(jù)中不超標(biāo)數(shù)據(jù)的平均數(shù)與方差;
(2)在空氣質(zhì)量為一級的數(shù)據(jù)中,隨機(jī)抽取2個數(shù)據(jù),求其中恰有一個為日均值小于30微克/立方米的數(shù)據(jù)的概率;
(3)以這天的日均值來估計一年的空氣質(zhì)量情況,則一年(按天計算)中約有多少天的空氣質(zhì)量超標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線過點(diǎn),其參數(shù)方程為(為參數(shù), ),以為極點(diǎn), 軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)求已知曲線和曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在底邊為等邊三角形的斜三棱柱ABC﹣A1B1C1中,AA1AB,四邊形B1C1CB為矩形,過A1C作與直線BC1平行的平面A1CD交AB于點(diǎn)D.
(Ⅰ)證明:CD⊥AB;
(Ⅱ)若AA1與底面A1B1C1所成角為60°,求二面角B﹣A1C﹣C1的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線過點(diǎn),且傾斜角為,在極坐標(biāo)系(與平面直角坐標(biāo)系取相同的長度,以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸)中,曲線的極坐標(biāo)方程為.
(1)求直線的參數(shù)方程與曲線的直角坐標(biāo)方程;
(2)設(shè)曲線與直線交于點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某服裝公司生產(chǎn)得到襯衫,每件定價80元,在某城市年銷售8萬件,現(xiàn)在該公司在該市設(shè)立代理商來銷售襯衫代理商要收取代銷費(fèi),代銷費(fèi)為銷售金額的%(即每銷售100元收取元),為此,該襯衫每件價格要提高到元才能保證公司利潤.由于提價每年將少銷售萬件,如果代理商每年收取的代銷費(fèi)不小于16萬元,則的取值范圍是___________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù),.
(1)求函數(shù)的單調(diào)區(qū)間及極值;
(2)若,是函數(shù)的兩個不同零點(diǎn),求證:①;②.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com