設(shè)F1,F(xiàn)2分別是橢圓+y2=1的左、右焦點(diǎn),P是第一象限內(nèi)該橢圓上的一點(diǎn),且PF1⊥PF2,則點(diǎn)P的橫坐標(biāo)為( )
A.1 | B. | C.2 | D. |
D
解析試題分析:由已知得,且設(shè),則有:由PF1⊥PF2得①且代入①得:;故選D.
考點(diǎn):1.橢圓的性質(zhì);2.向量的數(shù)量積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)已知⊙C:x2+y2-2x-2y+1=0,直線(xiàn)l與⊙C相切且分別交x軸、y軸正向于A(yíng)、B兩點(diǎn),O為坐標(biāo)原點(diǎn),且=a,=b(a>2,b>2).
(Ⅰ)求線(xiàn)段AB中點(diǎn)的軌跡方程.
(Ⅱ)求△ABC面積的極小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
設(shè)是橢圓的左、右焦點(diǎn),為直線(xiàn)上一點(diǎn),
是底角為的等腰三角形,則的離心率為( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
斜率為的直線(xiàn)過(guò)雙曲線(xiàn)的右焦點(diǎn),且與雙曲線(xiàn)的左右兩支都相交,則雙曲線(xiàn)的離心率的取值范圍是 ( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
設(shè)是關(guān)于t的方程的兩個(gè)不等實(shí)根,則過(guò),兩點(diǎn)的直線(xiàn)與雙曲線(xiàn)的公共點(diǎn)的個(gè)數(shù)為
A.3 | B.2 | C.1 | D.0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
如圖,已知橢圓,雙曲線(xiàn)(a>0,b>0),若以C1的長(zhǎng)軸為直徑的圓與C2的一條漸近線(xiàn)交于A(yíng),B兩點(diǎn),且C1與該漸近線(xiàn)的兩交點(diǎn)將線(xiàn)段AB三等分,則C2的離心率為( )
A.5 | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
已知橢圓的一個(gè)焦點(diǎn)為F(0,1),離心率,則該橢圓的標(biāo)準(zhǔn)方程為
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
橢圓的兩個(gè)焦點(diǎn)分別是,若上的點(diǎn)滿(mǎn)足,則橢圓的離心率的取值范圍是( )
A. | B. | C. | D.或 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
設(shè)圓(x+1)2+y2=25的圓心為C,A(1,0)是圓內(nèi)一定點(diǎn),Q為圓周上任一點(diǎn).線(xiàn)段AQ的垂直平分線(xiàn)與CQ的連線(xiàn)交于點(diǎn)M,則M的軌跡方程為( )
A.-=1 | B.+=1 |
C.-=1 | D.+=1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com