【題目】某工廠為生產(chǎn)一種標準長度為的精密器件,研發(fā)了一臺生產(chǎn)該精密器件的車床,該精密器件的實際長度為,“長度誤差”為,只要“長度誤差”不超過就認為合格.已知這臺車床分晝、夜兩個獨立批次生產(chǎn),每天每批次各生產(chǎn)件.已知每件產(chǎn)品的成本為元,每件合格品的利潤為元.在晝、夜兩個批次生產(chǎn)的產(chǎn)品中分別隨機抽取件,檢測其長度并繪制了如下莖葉圖:
(1)分別估計在晝、夜兩個批次的產(chǎn)品中隨機抽取一件產(chǎn)品為合格品的概率;
(2)以上述樣本的頻率作為概率,求這臺車床一天的總利潤的平均值.
【答案】(1)晝、夜批次合格品概率估計值分別為、;(2)元.
【解析】
(1)分別計算出晝、夜批次個樣本中合格品的個數(shù),據(jù)此可求得這兩個批次中合格品的概率;
(2)分別計算出晝、夜批次件產(chǎn)品的利潤,相加即可得出結(jié)果.
(1)由樣本數(shù)據(jù)可知,在晝批次的個樣本中有個不合格品,有個合格品,合格品的比率為,因此晝批次合格品概率估計值為.
在夜批次的個樣本中有個不合格品,有個合格品,合格品的比率為,因此夜批次合格品概率估計值為;
(2)晝批次合格品的概率為,不合格品的概率為,所以件產(chǎn)品中合格品的均值為件,不合格品的均值為件,所以利潤為(元);
夜批次合格品的概率為,不合格品的概率為,所以件產(chǎn)品中合格品的均值為
件,不合格品的均值為件,所以利潤為(元).
故這臺車床一天的總利潤的平均值為(元).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角梯形中, , , , 分別為, 的中點,以為圓心, 為半徑的圓交于,點在弧上運動(如圖).若,其中, ,則的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第七屆世界軍人運動會于2019年10月18日至27日在中國武漢舉行,中國隊以133金64銀42銅位居金牌榜和獎牌榜的首位.運動會期間有甲、乙等五名志愿者被分配到射擊、田徑、籃球、游泳四個運動場地提供服務(wù),要求每個人都要被派出去提供服務(wù),且每個場地都要有志愿者服務(wù),則甲和乙恰好在同一組的概率是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標值衡量,并依據(jù)質(zhì)量指標值劃分等級如下表:
從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測后得到如下的頻率分布直方圖:
(1)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品”的規(guī)定?
(2)在樣本中,按產(chǎn)品等級用分層抽樣的方法抽取8件,再從這8件產(chǎn)品中隨機抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;
(3)該企業(yè)為提高產(chǎn)品質(zhì)量,開展了“質(zhì)量提升月”活動,活動后再抽樣檢測,產(chǎn)品質(zhì)量指標值近似滿足,則“質(zhì)量提升月”活動后的質(zhì)量指標值的均值比活動前大約提升了多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的邊長為為正三角形,平面平面,是線段的中點,是線段上的動點.
(1)探究四點共面時,點位置,并證明;
(2)當(dāng)四點共面時,求到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列對任意都有(其中、、是常數(shù)) .
(Ⅰ)當(dāng),,時,求;
(Ⅱ)當(dāng),,時,若,,求數(shù)列的通項公式;
(Ⅲ)若數(shù)列中任意(不同)兩項之和仍是該數(shù)列中的一項,則稱該數(shù)列是“封閉數(shù)列”.當(dāng),,時,設(shè)是數(shù)列的前項和,,試問:是否存在這樣的“封閉數(shù)列”,使得對任意,都有,且.若存在,求數(shù)列的首項的所有取值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在多面體中,平面平面,且四邊形為正方形,且//,,,點,分別是,的中點.
(1)求證:平面;
(2)求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四邊形為直角梯形,,,,,,為線段上一點,滿足,為的中點,現(xiàn)將梯形沿折疊(如圖2),使平面平面.
(1)求證:平面平面;
(2)能否在線段上找到一點(端點除外)使得直線與平面所成角的正弦值為?若存在,試確定點的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,直線的參數(shù)方程為(為參數(shù),為直線的傾斜角),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.
(1)寫出曲線的直角坐標方程,并求時直線的普通方程;
(2)直線和曲線交于、兩點,點的直角坐標為,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com